
 International Journal of New Innovations in Engineering and Technology

Volume 26 Issue 4 April 2025 8 ISSN: 2319-6319

Remote Energy Monitoring System
Rudrank Dwarkanath Datye

Electronics and Telecommunication engineering,
Goa college of engineering, Ponda, Goa, India

Devendra Sutar

Assistant Professor
Electronics and Telecommunication engineering,
Goa college of engineering, Ponda, Goa, India

Pravar Tulsidas Naik

Electronics and Telecommunication engineering,
Goa college of engineering, Ponda, Goa, India

Sharvani Tulsidas Verenkar

Electronics and Telecommunication engineering,
Goa college of engineering, Ponda, Goa, India

Vaishnavi Vithoji Rane

Electronics and Telecommunication engineering,
Goa college of engineering, Ponda, Goa, India

Abstract - The purpose of the work is to optimize the ships operated by the local carriers of the area by an energy
monitoring system which is based on Internet of Things (IoT) solution. With the help of sensors, real time information on
key energy consumption parameters can be measured and system is able to monitor and analyze continuously. Data gets
sent to the AWS Cloud via a gateway where it then processes the data to establish KPI’s like specific fuel consumption.
The device also detects deviations from ideal service conditions, such as excessive fuel consumption, and provides alerts
for potential servicing requirements. It also generates historic energy demand profiles that can be used to analyses trends
and make proactive decisions in order to optimize operations.

Ӏ. INTRODUCTION

The real-time monitoring of energy is a key requirement to manage and optimize the consumption of energy. In this
work a real-time energy monitoring system for energy optimization, based on the ESP32 microcontroller and three
sensors: voltage sensor, current sensor and an ultrasonic sensor, is developed. The sensor data is read by the ESP32
and is transmitted using the lightweight MQTT protocol, that is well suited for the constrained IoT devices and the
cloud. When the data hits AWS IoT Core, it’s handled and processed with AWS Lambda functions. This serverless
computing service enables the system to process incoming data automatically. Once ascertained, energy-related
data is persisted securely to AWS DynamoDB, a high-performance NoSQL database platform. To serve this data to
its users, a web application is created with Node.js. This app reads your state by the data you stored in DynamoDB
and visualizes your data in a real-time way. The end-to-end system architecture that combines IoT devices, cloud
services and web-based technologies of the proposed solution ensures a cost-effective, scalable and secure way of
performing real time energy profiling. The rest of the paper is organized as follows Section II describes the
architecture for real-time data collection and storage (IoT). Section IV presents the design and development of web-
based IoT monitoring dashboards. Concluding remarks are provided in Section V.

 International Journal of New Innovations in Engineering and Technology

Volume 26 Issue 4 April 2025 9 ISSN: 2319-6319

Fig 1: Dataflow architecture

ӀӀ. REAL-TIME IOT DATA ACCUMULATION AND STORAGE

The ESP32 system has an architecture that supports multiple sensor integration to a single ESP32. Which enables
timely data sampling and robust data acquisition from various types of sensors integrated. The Data is further sent to
AWS cloud for storage purpose in DynamoDB via AWS IoT core. The data is sent using MQTT protocol

1. Integration of Voltage Sensor with ESP32:

The voltage sensor used is the ZMPT101B sensor, it is designed for exact AC voltage measurement in circuits. The
component outputs a minor, scaled-down AC voltage which the ESP32 can safely read and process and use for
further purposes. Setting it up properly with ESP32 is necessary to ensure accurate readings, involving changes to
the sensitivity of the sensor module and charting the ADC values to matching real-world voltage values through
program design.

2. Integration of Current Sensor with ESP32:

Current sensor used is ACS712 sensor, which gives output voltage proportional to the current flowing through the
sensor. the output is connected to ADC pin of the ESP32 for taking the voltage value. The ESP32 reads the analog
voltage and using calibration factors which are set in the Arduino program starts calculating the real current in
amperes. The ACS712 sensor is sensitive to noise as it gives random values when testing, filtering techniques like
averaging multiple values, are applied in the code to ensure accurate current values which are generated by the
sensor

3. Integration of Ultrasonic Sensor with ESP32:

The HC-SR04 ultrasonic sensor is for measuring the distance of the fuel tank in the ships. It has two main pins
Trigger and Echo, of which Trigger pin is connected to digital output pin on the ESP32, while the Echo pin is
connected to a digital input pin of ESP32. By sending short pulse from the ESP32 and measuring the time it takes
for the echo to return, we can calculate the distance using simple time-to-distance conversion formulas in the code.
Longer the time longer the distance principle.

4. Integration of ESP32 with AWS IoT Core:

The ESP32 connects to AWS IoT Core with the help of built in Wi-Fi service, additionally using the WiFi.h library
for real-time data transmission of sensor data to AWS. Secure MQTT communication is managed by the
PubSubClient.h library, with data formatted in JSON using ArduinoJson.h. The ESP32 publishes data to an MQTT
topic managed by AWS IoT Core. On IoT core to get Data the Thing must be generated as a virtual representation
of the device that needs to be connected according to that the Certificates are auto generated by AWS IOT core

 International Journal of New Innovations in Engineering and Technology

Volume 26 Issue 4 April 2025 10 ISSN: 2319-6319

which are needed for the integration purpose of AWS IoT core and ESP32. Endpoint id also required to connect the
AWS and ESP32.

5. Saving Sensor Data to DynamoDB via Lambda:

Sensor data received by AWS IoT Core is processed using an AWS Lambda function. Lambda Function created
specifically serves as a serverless processor that automatically extracts and setups the incoming MQTT data in IoT
core. The data includes parameters like voltage, current, and distance are stored in AWS DynamoDB, a
customizable NoSQL database. DynamoDB ensures fast recovery and robustness of real-time sensor data. Also,
Lambda prepares the stored information for access by the web application. The web app that is built using Node.js
and JavaScript, queries DynamoDB to fetch the latest readings from the storage, allowing users to monitor energy
usage instantly.

ӀӀӀ. REAL-TIME IOT DATA VISUALIZATION AND ALERTING

Fig 2: WebSocket APIs on AWS for Real-Time Communication

For real-time IoT data visualization, the data flow begins with IoT devices sending their data streams to AWS IoT
Core there the data is passively picked up by an IoT Core Rule, which then triggers a Lambda function to process it
and persist this unstructured data into a scalable DynamoDB table. The dynamo DB streams were turned on, which
means every event or change is captured, and another Lambda function that consumes the stream and called the
Amazon API Gateway WebSocket API when any event happens, which ensures a persistent connection in a two-
way channel with any on-line website clients. Web Sockets are important because they allow the server to push
updates to the client, such as a sensor value change, without having to repeatedly make API calls for updates. The
server maintains client connections using the $connect and $disconnect routes, so it knows which clients are active.
The Lambda function uses the API Gateway Management API's Post To Connection action to send data payloads to
a specific client through the connection that was created when a client connected, in this case through their unique
connection Id. The website has standard JavaScript using web requisites to define the updates being sent down so
that it can dynamically display the data in near-real time.

Simultaneously, it allows for real-time alert notifications. While the original Lambda function is processing the IoT
data stream, it also checks that incoming data against critical thresholds or conditions that represent alert criteria. If
an alert criterion met, this function will publish a message with a description of the alert to AWS SNS Topic.
Another "SNS to WebSocket" Lambda function also subscribes to that topic and will receive all the notifications for
the alert. Then it would use the already constructed API Gateway WebSocket API to send the alert messages to all
clients that are online. The client-side JavaScript listens for these kinds of alert messages and invokes some type of
visual or audible notification strategy to let the user know about critical event.

Amazon S3 serves as the manager for static website hosting through its serverless solution. The cloud model of
serverless computing enables developers to create code for deployment through infrastructure management free
interfaces. Organizations can concentrate on building applications and speeding up product development since AWS

 International Journal of New Innovations in Engineering and Technology

Volume 26 Issue 4 April 2025 11 ISSN: 2319-6319

manages their server provisioning and scaling alongside patch application and system availability. The web interface
contains all static assets including HTML, CSS and JavaScript files which are stored in S3 buckets that allow
uninterrupted public accessibility. The method provides businesses scalability and durability with cost-effective
advantages. The website starts from Amazon API Gateway that functions as a managed service for creating together
with publishing and protecting the API. The API Gateway service enables client HTTP(S) requests to reach AWS
Lambda functions that serve as backend processing components. Dynamic content generation through Lambda
functions enables access to Amazon DynamoDB data which serves as the fully managed NoSQL database for
application data storage and retrieval. Without server management responsibilities the solution reduces operational
expenses while maximizing cost effectiveness.

Fig 3: AWS Serverless Computing

Step Component/Service Purpose Library/Protocol Used

1 ESP32 Collect sensor data WiFi.h, WiFiClientSecure.h

2 Wi-Fi Connection Connect ESP32 to Internet WiFi.h

3 MQTT Communication Publish data to AWS IoT Core PubSubClient.h

4 AWS IoT Core
Manage incoming MQTT
messages

MQTT Protocol

5 AWS Lambda Process received data Serverless compute

6 AWS DynamoDB Store processed data NoSQL database

7

WebSocket AWS API

Send real-time data from
DynamoDB to clients

WebSocket Protocol

8

AWS S3

Host the static website Static Web Hosting

9 AWS SNS Send real-time alerts Pub/Sub Messaging

10 Node.js Web App Display data to users AWS SDK, Node.js

Table 1: Real-Time Sensor Data Flow and Cloud Integration

 International Journal of New Innovations in Engineering and Technology

Volume 26 Issue 4 April 2025 12 ISSN: 2319-6319

1. Frontend and Backend Technologies

The frontend user interface operates with HTML together with CSS and JavaScript as enabling components.
Through the implementation of Chart.js the program fetches backend API data while updating the front-end
interface to display live information and alert notifications and interactive charts.

The Node.js environment includes Express.js as its backend framework to serve the server.js file which
communicates with AWS DynamoDB through aws-sdk. The application uses CORS (cors) middleware to establish
Cross-Origin Resource Sharing for frontend and backend interoperability. The application safely handles
environment variables which contain AWS credentials through the dotenv library.

2. System Overview and Data Flow

The Remote Vessel Monitoring System is intended to provide real time monitoring and visualization of important
vessel parameters.

• System Overview: The system allows users to log-in to the system and have access to a dashboard with live
indicators of voltage, current, power, and fuel level. The fuel level is shown both numerically and visually as a
dynamic indicator. Simulated weather data is incorporated as well. A core functionality of the system is the
visualization of system performance trends over time using charts that allow interaction. The system also includes a
notification functionality to notify users of any critical conditions.

• Data Flow: The frontend JavaScript (script.js) is where data flow begins, as the code periodically fetches the most
recent readings from the backend API endpoint. When the backend API is called, it fetches the latest data records
from the DynamoDB database. The backend also calculates the fuel level as the distance value is brought over with
the latest reading. The backend then sends the processed data - voltage, current, power, and the calculated fuel level
- to the frontend for display, in the form of a JSON response. The frontend will then update the appropriate UI
elements dynamically and reflect these real-time measurements in the charts for users, allowing users to see the
status of the vessel in near real-time.

Fig 4: Real-time Vessel Monitoring Dashboard Interface with Fuel Level Alert

 International Journal of New Innovations in Engineering and Technology

Volume 26 Issue 4 April 2025 13 ISSN: 2319-6319

Fig 5: Line Chart Representation of Voltage, Current, and Power Trends

V. CONCLUSION

In this paper, we presented the process of developing an IoT-based Remote Vessel Monitoring System which
presents a better way to utilize energy for local carriers. The system's key feature is its real-time monitoring and
visualization of important parameters and information through the integration of multiple sensor modules and cloud-
based data processing. The hardware we selected is the ESP32 microcontroller, chosen for its dual-core Xtensa LX6
processors, robust wireless capabilities (Wi-Fi and Bluetooth), and efficient power management. This hardware base
permits us to acquire data from many sensors, including voltage sensors, current sensors, and the ultrasonic sensor,
which gives a complete overview of the vessel's working status and the parameters in the vessel being monitored.
On the cloud side, we selected Amazon Web Services (AWS) based on its scalability, reliability, and third-party
management of the operational overhead. AWS IoT Core provides secure ingestion of the data, while AWS Lambda
functions provide serverless programming for the data ingestion and creating the transformations. DynamoDB is
used to store time series data as a NoSQL data store. Our complete system will provide real-time data and is capable
of storing the data and displaying the values through our own developed web-based monitoring dashboards. The
dashboards contain visualizations of the voltage, current, power, and fuel level. In conclusion, the Remote Vessel
Monitoring System developed can provide a solid and efficient process to improve energy efficiency of vessel. The
system has provided a real-time, display of information, monitoring capability to support informed and data-driven
actions that optimize the performance and energy consumption.

VII. ACKNOWLEDGEMENT

The project was carried with generous support and assistance of Electro Controls Manufacturer of electric panels
and automation system. Their collaboration was essential to the success of this project.

REFERENCES

[1] Chakraborty, S., & Aithal, P. S., (2023). Let Us Create Multiple IoT Device Controller Using AWS, ESP32 And C#. International Journal
of Applied Engineering and Management Letters (IJAEML), 7(2), 27-34. DOI: https://doi.org/10.5281/zenodo.7857660

[2] https://iaeme.com/MasterAdmin/Journal_uploads/IJRCAIT/VOLUME_7_ISSUE_2/IJRCAIT_07_02_121.pdf
[3] https://aws.amazon.com/blogs/industries/real-time-operational-monitoring-of-renewable-energy-assets-with-aws-iot/
[4] Espress if Systems, "ESP32 Datasheet Version 3.9," Espressif Documentation, 2023. [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
[5] AWS, "AWS IoT Core Documentation," Amazon Web Services, 2024. [Online]. Available:

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
[6] AWS, "AWS Lambda Developer Guide," Amazon Web Services, 2024. [Online]. Available:

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

 International Journal of New Innovations in Engineering and Technology

Volume 26 Issue 4 April 2025 14 ISSN: 2319-6319

[7] AWS, "Amazon DynamoDB Developer Guide," Amazon Web Services, 2024. [Online]. Available:
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

[8] AWS, "Amazon API Gateway WebSocket APIs," Amazon Web Services, 2024. [Online]. Available:
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-overview.html

[9] https://docs.aws.amazon.com/pdfs/whitepapers/latest/build-static-websites-aws/build-static-websites-aws.pdf
[10] https://jaytillu.medium.com/understanding-serverless-computing-with-aws-lambda-8db9f9af1056.

