Design of Low Cost E-Bicycle using Brushless DC Motor with Speed Regulator

P Thava Prakash¹, P.Venketesan², D.Vignesh³, S.Prakash⁴, S.Saravanan⁵

UG Scholars^{1,2,3,},Professor⁴, Professor⁵
Department of Electrical and Electronics Engineering, Muthayammal Engineering College (Autonomous),
Namakkal, Tamilnadu

Abstract: This system proposes a simple, cost effective and efficient brushless DC (BLDC) motor drive for battery (BT) array fed E cycle system. A DC-DC converter is utilized to extract the maximum available power from the BT array. The proposed control algorithm eliminates phase current sensors and adapts a fundamental frequency switching of the Z source inverter (ZSI), thus avoiding the power losses due to high frequency switching. No additional control or circuitry is used for speed control of the BLDC motor. The speed is controlled through a variable DC link voltage of ZSI. An appropriate control of DC-DC converter through the perturb and observer conductance maximum power point tracking (INC-MPPT) algorithm offers soft starting of the BLDC motor. The proposed E cycle system is designed and modeled such that the performance is not affected under dynamic conditions. The suitability of proposed system at practical operating conditions is demonstrated through simulation results using MATLAB/ Simulink followed by an experimental validation.

Key Words: BLDC (Brushless DC Motor), ZC(Zeta converter)

I. INTRODUCTION

The story of summer travel in rural areas, and pollution. The best tech app asa Future Electric Bicycles rack option. The E-bike is a battery-operated vehicle thatemits less pollution and requires less maintenance. Electric Bicycles are the most environmentally friendly alternative to both regular bicycles and autos. Being a sustainable and practical mode of transportation. Physically handicapped passengers can travel independently on Electric Bicycles thanks to an uniquemodification. The goal of building an electric bicycle is to demonstrate the benefits of using clean energy rather than a combustion engine to generate power. These cycles are powered by a battery coupled to an electric motor. The performance of the motor can be altered to meet the limits, depending on its type. Electric bicycles are the bridge between commuting faster and commuting safer, electric bicycle reduces the human energy input that makes commuting easier and faster. A normal traditional bicycle moving at its average speed will be around 15-19km/hr., electric bicycles can commute at a speed of 25km/h and maximum speed can be increased even further without the human energy input. An avg person gets tired after 35-45 mins of cycling, in other words, we lose internal energy as we commute by pedaling on a normal bicycle.

This energy that ahuman loses for commuting can be eliminated by the use of an electric bicycle and that energy can be used in other work that requires. The classic boost converter is not a good choice for the high step-up conversion due to following three reasons. Firstly, an extremely high duty-cycle must be used to obtain the steep conversion ratio, which causes serious losses on the power devices due to their parasitic parameters. Secondly, low on-resistance active switches and good performance diodes cannot be adopted due to the high voltage stress. Third, the reverse-recovery problem of the output diode is severe due to its short conduction time. All these three factors degrade the efficiency and limit the power level. So, after invention of power semiconductor devices these problems can be overcome. Consequently, a large number of inverters are invented but key components in all these power electronic devices. Particularly in hybrid, electric, and fuel cell vehicles, the Insulated Gate Bipolar Transistors (IGBTs), freewheeling diodes and advanced power module technology are used. After that a Novel PWM scheme was invented for controllingthe output of an inverter with improved fundamental component value.

II.EXISTING SYSTEM

This Project presents a Power Factor Correction (PFC)-based bridgeless Luo (BL-Luo) converter-fed brushless dc (BLDC) motor drive. A single voltage sensor is used for the speed control of the BLDC motor and PFC at ac mains. The voltage follower control is used for a BL-Luo converter operating in discontinuous inductor current mode. The speed of the BLDC motor is controlled by an approach of variable dc- link voltage, which allows a low-frequency

switching of the voltage source inverter for the electronic commutation of the BLDC motor, thus offering reduced switching losses. The proposed BLDC motor drive is designed to operate over a wide range of speed control with an improved power quality at ac mains. The power quality indices thus obtained are under the recommended limits of IEC 61000-3-2. The performance of the proposed drive is validated with test results obtained on a developed prototype of the drive.

III.PROPOSED SYSTEM

The proposed PFC-based bridgeless DC-DC (BL-DC-DC) converter-fed BLDC motor drive. A single-phase Supply followed by a filter and a BL-DC-DC converter is used to feed a VSI driving a BLDC motor. The BL-DC-DC converteris designed to operate in DICM to act as an inherent power factor Pre regulator. The speed of the BLDC motor is controlled by adjusting the dc-link voltage of VSI using a single voltage sensor. This allows VSI to operate at fundamental frequency switching (i.e., electronic commutation of the BLDC motor) and hence has low switching losses in it, which are considerably high in a PWM-based VSI feeding a BLDC motor. The proposed scheme is designed, and its performance is simulated forachieving an improved power quality at ac mains for a wide range of speed Controland supply voltage variations. Finally, the simulated Performance of the proposed drive is validated with test results on a developed prototype of the drive.

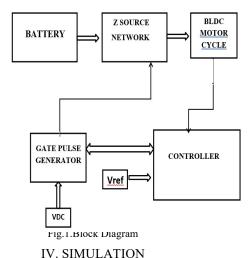


Fig.2.Simulation Diagram

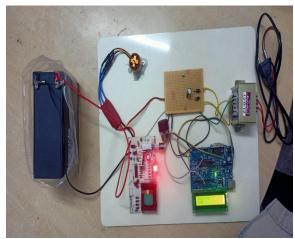


Fig.3. Hardware Implementation

The speed controller typically consists of three main components: a microcontroller, a power electronic circuit, and a feedback sensor. The microcontroller receives signals from the feedback sensor, which could be a Hall-effect sensor or an encoder, and calculates the required power to be delivered to the motor based on the rider's input and the current speed of the motor. The power electronic circuit then adjusts the voltage and current supplied to the motor to achieve the desired speed. In addition to the speed controller, an e-bicycle with a BLDC motor may also include a battery, a charger, and a display unit to show important information such as speed, battery level, and distance traveled. Overall, an e-bicycle with a BLDC motor and speed regulator provides a comfortable, efficient, and ecofriendly way of transportation, especially in urban areas with heavy traffic and limited parking spaces.

V.RESULTS & DISCUSSION

Electric bicycles, also known as e-bicycles, have become increasingly popular due to their eco-friendliness and low maintenance costs. The use of brushless DC motors (BLDC) with a speed regulator can greatly enhance the performance. The use of a brushless DC motor with a speed regulator in an e-bicycle has resulted in a number of positive outcomes. Firstly, the e-bicycle is able to achieve higher speeds and greater efficiency compared to traditional bicycles. These are becoming increasingly popular as a more environmentally friendly and efficient mode of transportation. E-bikes typically use brushless DC motors with speed regulators to provide smooth and reliable power delivery. These becoming more popular as they are considered an environmentally friendly alternative to gasoline-powered vehicles. They are more efficient, cost-effective and emit no harmful pollutants. The use of brushless DC (BLDC) motor in e-bicycles has gained popularity due to its high efficiency and reliability. In this study, a speed regulator is implemented to control the speed of the BLDC motor, and the performance of the e-bicycle is evaluated. The use of brushless DC motors (BLDC) with speed regulators in e-bicycles has become increasingly popular due to their high efficiency, low maintenance, and longer lifespan compared to traditional brushed DC motors

VI.CONCLUSION

A PFC based BL-DC-DC converter-fed BLDC motor drive has been proposed for a wide range of speeds and supply voltages. A single voltage sensor- based speed control of the BLDC motor using a concept of variable dc-link voltage has been used. The PFC BL-DC-DC converter has been designed to operate in DICM and to act as an inherent power factor pre regulator. An electronic commutation of the BLDC motor has been used which utilizes a low-frequency operation of VSI for reduced switching losses. The proposed BLDC motor drive has been designed and its performance is simulated in MATLAB/Simulink environment for achieving an improved power quality over a wide range of speed control. Finally, the performance of the proposed drive has been verified experimentally on a developed hardware prototype. A satisfactory performance of the proposed drive has been achieved and is a recommended solution for low- power applications.

REFERENCES

 V.Dhinesh, T.Premkumar, S.Saravanan and G.Vijayakumar," Online Grid Integrated Photovoltaic System with New Level Inverter System" International Research Journal of Engineering and Technology (IRJET), Vol.5, Issue 12, pp.1544-1547, 2018.

- [2] J.Vinoth, T.Muthukumar, M.Murugagndam and S.Saravanan," Efficiency Improvement of Partially Shaded PV System, International Journal of Innovative Research in Science, Engineering and Technology, Vol.4, Special issue 6, pp.1502-1510, 2015.
- [3] M.B.Malayandi, Dr.S.Saravanan, Dr. M.Muruganandam, "A Single Phase Bridgeless Boost Converter for Power Factor Correction on Three State Switching Cells", International Journal of Innovative Research in Science, Engineering and Technology, Vol. 4, Special Issue 6, pp. 1560-1566, May 2015.
- [4] A.Sasipriya, T.Malathi, and S.Saravanan, "Analysis of Peak to Average Power Ratio Reduction Techniques in SFBC OFDM System" IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), Vol. 7, No.5, 2013.
- [5] P.Ranjitha, V.Dhinesh, M.Muruganandam, S.Saravanan, "Implementation of Soft Switching with Cascaded Transformers to drive the PMDC Motor", International Journal of Innovative Research in Science, Engineering and Technology, Vol. 4, Special Issue 6, pp. 1411-1418, May 2015.
- [6] C.Sowmiya, N.Mohanandhini, S.Saravanan and M.Ranjitha,"Inverter Power Control Based On DC-Link Voltage Regulation for IPMSM Drives using ANN" International Research Journal of Engineering and Technology (IRJET), Vol.5, Issue 11, pp.1442-1448, 2018.
- [7] N.Yuvaraj, B.Deepan, M.Muruganandam, S.Saravanan, "STATCOM Based of Adaptive Control Technique to Enhance Voltage Stability on Power Grid", International Journal of Innovative Research in Science, Engineering and Technology, Vol. 4, Special Issue 6, pp. 1454-1461, May 2015.
- [8] P.Manikandan, S.Karthick, S.Saravanan and T.Divya," Role of Solar Powered Automatic Traffic Light Controller for Energy Conservation" International Research Journal of Engineering and Technology (IRJET), Vol.5, Issue 12, pp.989-992, 2018.
- [9] R.Satheesh Kumar, D. Kanimozhi, S. Saravanan, "An Efficient Control Scheme for Wind Farm Using Back to Back Converter," International Journal of Engineering Research & Technology (IJERT), Vol. 2, No.9, pp.3282-3289, 2013.
- [10] K.Prakashraj, G.Vijayakumar, S.Saravanan and S.Saranraj, "IoT Based Energy Monitoring and Management System for Smart Home Using Renewable Energy Resources," International Research Journal of Engineering and Technology, Vol.7, Issue 2, pp.1790-1797, 2020.
- [11] J Mohammed siddi, A. Senthil kumar, S.Saravanan, M. Swathisriranjani, "Hybrid Renewable Energy Sources for Power Quality Improvement with Intelligent Controller," International Research Journal of Engineering and Technology, Vol.7, Issue 2, pp.1782-1789, 2020.
- [12] S. Raveendar, P.M. Manikandan, S. Saravanan, V. Dhinesh, M. Swathisriranjani, "Flyback Converter Based BLDC Motor Drives for Power Device Applications," International Research Journal of Engineering and Technology, Vol.7, Issue 2, pp.1632-1637, 2020.
- [13] K. Manikanth, P. Manikandan, V. Dhinesh, Dr. N. Mohananthini, Dr. S. Saravanan, "Optimal Scheduling of Solar Wind Bio-Mass Systems and Evaluating the Demand Response Impacts on Effective Load Carrying Capability," International Research Journal of Engineering and Technology, Vol.7, Issue 2, pp.1632-1637, 2020.
- [14] T.R. Vignesh, M.Swathisriranjani, R.Sundar, S.Saravanan, T.Thenmozhi," Controller for Charging Electric Vehicles Using Solar Energy", Journal of Engineering Research and Application, vol.10, Issue.01,pp.49-53, 2020.
- [15] V.Dhinesh, Dr.G.Vijayakumar, Dr.S.Saravanan," A Photovoltaic Modeling module with different Converters for Grid Operations", International Journal of Innovative Research in Technology, vol.6, Issue 8, pp.89-95, 2020.
- [16] V. Dhinesh, R. Raja, S. Karthick, Dr. S. Saravanan," A Dual Stage Flyback Converter using VC Method", International Research Journal of Engineering and Technology, Vol.7, Issue 1, pp.1057-1062, 2020.
- [17] G. Poovarasan, S. Susikumar, S. Naveen, N. Mohananthini, S. Saravanan," Study of Poultry Fodder Passing Through Trolley in Feeder Box," International Journal of Engineering Technology Research & Management, vol.4, Issue.1, pp.76-83, 2020.
- [18] C. Sowmya, N. Mohananthini, S. Saravanan, and A. Senthil kumar," Using artificial intelligence inverter power control which is based on DC link voltage regulation for IPMSM drives with electrolytic capacitor," AIP Conference Proceedings 2207, 050001 (2020); https://doi.org/10.1063/5.0000390, Published Online: 28 February 2020.
- [19] M.Revathi, S.Saravanan, R.Raja, P.Manikandan," A Multiport System for A Battery Storage System Based on Modified Converter with MANFIS Algorithm," International Journal of Engineering Technology Research & Management, vol.4, issue 2, pp.217-222, 2020.
- [20] D Boopathi, S Saravanan, Kaliannan Jagatheesan, B Anand, "Performance estimation of frequency regulation for a micro-grid power system using PSO-PID controller", International Journal of Applied Evolutionary Computation (IJAEC), Vol.12, Issue.4, pp.36-49, 2021.
- [21] V Deepika, S Saravanan, N Mohananthini, G Dineshkumar, S Saranraj, M Swathisriranjan, "Design and Implementation of Battery Management System for Electric Vehicle Charging Station", Annals of the Romanian Society for Cell Biology, Vol.25, Issue.6, 17769-17774, 2021
- [22] A Senthilkumar, S Saravanan, N Mohananthini, M Pushparaj, "Investigation on Mitigation of Power Quality Problems in Utility and Customer side Using Unified Power Quality Conditioner", Journal of Electrical Systems, Vol.18, Issue.4, pp.434-445, 2022.
- [23] V Kumarakrishnan, G Vijayakumar, D Boopathi, K Jagatheesan, S Saravanan, B Anand," Frequency regulation of interconnected power generating system using ant colony optimization technique tuned PID controller", Control and Measurement Applications for Smart Grid: Select Proceedings of SGESC 2021, pp..129-141.
- [24] C Nagarajan, B Tharani, S Saravanan, R Prakash," Performance estimation and control analysis of AC-DC/DC-DC hybrid multi-port intelligent controllers based power flow optimizing using STEM strategy and RPFC technique", International Journal of Robotics and Control Systems", Vol.2, Issue.1, pp.124-139, 2022.
- [25] G Vijayakumar, M Sujith, S Saravanan, Dipesh B Pardeshi, MA Inayathullaa," An optimized MPPT method for PV system with fast convergence under rapidly changing of irradiation", 2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON), pp.1-4.
- [26] C Nagarajan, K Umadevi, S Saravanan, M Muruganandam, "Performance Analysis of PSO DFFP Based DC-DC Converter with Non Isolated CI using PV Panel", International Journal of Robotics and Control Systems' Vol.2, Issue.2, pp.408-423, 2022.
- [27] VM Geetha, S Saravanan, M Swathisriranjani, CS Satheesh, S Saranraj, "Partial Power Processing Based Bidirectional Converter for Electric Vehicle Fast Charging Stations", Journal of Physics: Conference Series, Vol.2325, Issue.1, pp.012028, 2022.
- [28] M Santhosh Kumar, G Dineshkumar, S Saravanan, M Swathisriranjani, M Selvakumari, "Converter Design and Control of Grid Connected Hybrid Renewable Energy System Using Neuro Fuzzy Logic Model", 2022 Second International Conference on Computer Science, Engineering and Applications (ICCSEA), pp.1-6, 2022.
- [29] C Gnanavel, A Johny Renoald, S Saravanan, K Vanchinathan, P Sathishkhanna, "An Experimental Investigation of Fuzzy-Based Voltage-Lift Multilevel Inverter Using Solar Photovoltaic Application", Smart Grids and Green Energy Systems, pp.59-74, 2022.
- [30] C Nagarajan, K Umadevi, S Saravanan, M Muruganandam, "Performance investigation of ANFIS and PSO DFFP based boost converter with NICI using solar panel", International Journal of Engineering, Science and Technology, Vol.14, Issue.2, pp.11-21,2022.

- [31] K Priyanka, N Mohananthini, S Saravanan, S Saravanan, S Manikandan, "Renewable operated electrical vehicle battery charging based on fuzzy logic control system", AIP Conference Proceedings, Vol.2452, Issue.1, pp.030007, 2022.
- [32] V Kumarakrishnan, G Vijayakumar, D Boopathi, K Jagatheesan, S Saravanan, B Anand, "Optimized PSO technique based PID controller for load frequency control of single area power system", Solid State Technology, Vol.63. Issue.5, pp.7979-7990, 2020.
- [33] G. Poovarasan, S. Susikumar, S. Naveen, N. Mohananthini, S. Saravanan, "Implementation of IoT Based Poultry Feeder Box", International Journal of Innovative Research In Technology, Vol.6, Issue.2, pp.33-38, 2020.
- [34] N.Gokulnath, B.Jasim Khan, S.Kumaravel, Dr.A.Senthil Kumar and Dr.S.Saravanan, "Soldier Health and Position Tracking System", International Journal of Innovative Research In Technology (IJIRT)), Vol-6 Issues 12, pp.39-45, 2020.
- [35] P.Navaneetha, R.Ramiya Devi, S.Vennila, P.Manikandan and Dr.S.Saravanan, "IOT Based Crop Protection System against Birds and Wild Animal Attacks", International Journal of Innovative Research In Technology (IJIRT), Vol-6 Issues 11, pp.133-143, 2020.
- [36] V. Dhinesh, D. Prasad, G. Jeevitha, V. Silambarasan, Dr. S. Saravanan, "A Zero Voltage Switching Pulse Width Modulated Multilevel Buck Converter", International Research Journal of Engineering and Technology (IRJET), Vol 7 Issue 3, pp.1764,2020.
- [37] K. Punitha, M. Rajkumar, S. Karthick and Dr. S. Saravanan, "Impact of Solar And Wind Integration on Frequency Control System", International Research Journal of Engineering and Technology (IRJET), Vol 7 Issue 3, pp.1357-1362,2020.
- [38] A.Arulkumar, S.Balaji, M.Balakrishnan, G.Dineshkumar and S.Saravanan, "Design And Implementation of Low Cost Automatic Wall Painting Machine" International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 03, pp.170-176, 2020.
- [39] V.Periyasamy, S.Surya, K. Vasanth, Dr.G.Vijayakumar and Dr.S.Saravanan, "Design And Implementation of Iot Based Modern Weaving Loom Monitoring System" International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 04, pp.11-18, 2020.
- [40] M.Yogheshwaran, D.Praveenkumar, S.Pravin, P.M.Manikandan and Dr.S.Saravanan, "IoT Based Intelligent Traffic Control System" International Journal of Engineering Technology Research & Management (IJETRM), Vol.4 Issues 04, pp.59-63, 2020.
- [41] R.Pradhap, R.Radhakrishnan, P.Vijayakumar, R.Raja and Dr.S.Saravanan, "Solar Powered Hybrid Charging Station For Electrical Vehicle" International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 04, pp.19-27, 2020
- [42] S.Shenbagavalli, T.Priyadharshini, S.Sowntharya, P.Manikandan and Dr.S.Saravanan, "Design and Implementation of Smart Traffic Controlling System" International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 04, pp.28-36, 2020.
- [43] M.Pavithra, S.Pavithra, R.Rama Priya, M.Vaishnavee, M.Ranjitha and S.Saravanan, "Fingerprint Based Medical Information System Using IoT" International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 04, pp.45-51, 2020.
- [44] A.Ananthan, A.M.Dhanesh, J.Gowtham, R.Dhinesh, G.Jeevitha and Dr.S.Saravanan, "IoT Based Clean Water Supply" International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 03, pp.154-162, 2020.
- [45] R.Anbarsan, A.Arsathparvez, K.S.Arunachalam, M.Swathisriranjani and Dr.S.Saravanan, "Automatic Class Room Light Controlling Using Arduino" International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 03, pp.192-201, 2020.
- [46] S.Karthikeyan, A.Krishnaraj, P.Magendran, T.Divya and Dr.S.Saravanan, "The Dairy Data Acquisition System" International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 03, pp.163-169, 2020.
- [47] M.Amaran, S.Mannar Mannan, M.Madhu, Dr.R.Sagayaraj and Dr. S.Saravanan, "Design And Implementation of Low Cost Solar Based Meat Cutting Machine" International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 03, pp.202-208, 2020.
- [48] N.Harish, R.Jayakumar, P.Kalaiyarasan, G.Vijayakumar and S. Saravanan, "IoT Based Smart Home Energy Meter" International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 03, pp.177-183, 2020.
- [49] K.Subashchandrabose, G.Moulieshwaran, M.Raghul, V.Dhinesh and S.Saravanan, "Design of Portable Sanitary Napkin Vending Machine", International Journal of Engineering Technology Research & Management (IJETRM), Vol-4 Issues 03, pp.52-58, 2020.
- [50] R.Gopi, K.Gowdhaman, M.Ashok, S.Divith, S.Saravanan and G.Dineshkumar, "An Online Method of Estimating State of Health of A Li-Ion Battery", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.31-36, 2023.
- [51] S.Azhaganandham, P.Elangovan, M.S.Kayalkanan, M.Dineshkumar and S.Saravanan, "Automatic Direct Torque Control System For 3 Phase Induction Motor", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.1-3, 2023.
- [52] K. Ranjith Kumar, A.Naveen, R.Ragupathi, S. Savitha and S. Saravanan, "Automatic Industrial-Based Air Pollution Avoidance System Using Iot", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.100-105, 2023.
- [53] G.T.Nandhini, V.Megasri, T.Jeevitha, S.Sandhiya and S. Saravanan, "Automatic Pick And Drop Helping Robot", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.72-76, 2023.
- [54] K.Deepika, S.Divya, A.Hema, R.Meena, V.Deepika and S.Saravanan, "Automatic Solar Panel Cleaning System", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.62-66, 2023.
- [55] A.Balaji, K.Harikiruthik, A.Mohamed Hassan, S.Saravanan and S.Saranraj, "Design and Implementation of A Single Stage Multi-Pulse Flexible Topology Thyristor Rectifier for Battery Charging in Electric Vehicles", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.37-42, 2023.
- [56] D.Hemalatha, S.Indhumathi, V.Myvizhi and S.Saravanan, "Design and Implementation of Intelligent Controller for Domestic Applications", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.4-7, 2023.
- [57] N.Priyadharshini, S.Saraswathi, T.Swetha, K.Sivaranjani, K.Umadevi and S.Saravanan, "Fuel Monitoring System using IoT", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.126-130, 2023.
- [58] S. Divyasri, E. Indhu, M. P. Keerthana, M. Selvakumari and S. Saravanan, "Gas Cylinder Monitoring System using IoT", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.67-71, 2023.
- [59] J.Arul, R.Balaji, S.Jeyamoorthy, M.Manipathra, R.Sundar and S.Saravanan, "IoT based Air Conditioner Control using ESP32", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.48-52, 2023.
- [60] Vundel Munireddy, J.Prahathesvaran, C.R.Thirunavukarasu, M.Santhosh Kumar and S.Saravanan, "IoT Based Charge Controller for Direct Fast Charging of Electric Vehicles Using Solar Panel", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.77-81, 2023.
- [61] D.Monish Kumaar, K.Akash, S.Aswinkumar, S.Saravanan and R. Sagayaraj, "IoT based Industry Surveillance and Air Pollution Monitoring using Drones", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.14-18, 2023.
- [62] T.Silambarasan, R.Surya, J.Pravinkumar, R.Sundar and S Saravanan, "IoT based Monitoring System For Sewage Sweeper", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.88-93, 2023.

- [63] R.Aravinthan, Alwin.Augustin, P.Divagaran, S.Saravanan and P.Manikandan, "IoT Based Power Consumption and Monitoring System", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.43-47, 2023.
- [64] S.Partheeban, S.Sundaravel, S.Umapathi, R.Sagayaraj and S.Saravanan, "IoT based Safety Helmet for Mining Workers", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.116-120, 2023.
- [65] D.K.Vignesh, K.Sabarishwaran, S.Yuvaraj, P.Manikandan and S Saravanan, "IoT based Smart Dustbin", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.82-87, 2023.
- [66] P Muthukrishnan, P Poovarasan, S Vasanth, R Raja and S Saravanan, "Smart Borewell Child Rescue System", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.121-125, 2023.
- [67] S. Gokul, B. Gokulnath, P. Manikandan, S.Saravanan and N. Mohananthini, "Smart Crop Protection From Animals And Birds Using Arduino", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.19-25, 2023.
- [68] M.Abinesan, S.Jawahar, S.A.Gopi, A.Gokulraj and S.Saravanan, "Smart EV Charging Hub Integrated with Renewable Energy for Highway Utility", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.58-61, 2023.
- [69] K.Eswaramoorthi, R.Manikandan, R.Balamurugan, C.Ramkumar and S.Saravanan, "Smart Parking System using IoT", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.53-57, 2023.
- [70] S.Nirmalraj, C.Pranavan, M.Prem and S.Saravanan, "Smart Trolley With IoT Based Billing System", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.111-115, 2023.
- [71] S. NithyaSri, S.S.Sabitha, M.Thilagavathi, S.Umamageshwari, C.Nithya and S.Saravanan, "Smart Wireless Notice Board using IoT", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.106-110, 2023.
- [72] V.Gunasekaran, M.Gowtham, S. Anbubalaji, S.Saravanan and R.Prakash, "Solar based Electric Wheel Chair", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.8-13, 2023.
- [73] S.Naveenkumar, S.Prakash, A.P.Shrikirishnaa, C.Ramkumar and S.Saravanan, "Two to Three Phase 5HP Digital Panel", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.94-99, 2023.
- [74] Harivignesh K, Jaisankar.A, Chandru.J, Saravanan.S and Raja.R, "Voice Controlled Automatic Writer", International Journal of New Innovations in Engineering and Technology, Vol.22, Issue.3, pp.26-30, 2023.