Color class Dominating sets in Triangular ladder and Mobius ladder Graphs

A. Vijayalekshmi

Associate Professor of Mathematics, S.T. Hindu College, Nagercoil-629002 Tamilnadu, India

Niju.P

Research Scholar, Reg.No.11922, Department of Mathematics, S.T. Hindu College, Nagercoil-629 002, Tamilnadu, India. (Affiliated to ManonmaniamSundaranar University, Tirunelveli-627012)

Abstract - Let G = (V, E) be a graph. A color class dominating set of G is a proper coloring C of G with the extra property that every color class in C is dominated by a vertex in G. A colorclass dominating set is said to be a minimal color class dominating set if no proper subset of C is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by $\gamma_{\chi}(G)$. Here we obtain $\gamma_{\chi}(G)$ for Triangular ladder graph and Mobius ladder graph. Key words: Chromatic number, Domination number, Color class dominating set, Color class domination number. Mathematics Subject Classification: 05C15, 05C69.

I. INTRODUCTION

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in [2].

Let G = (V, E) be a graph of order p. The open neighborhood N(v) of a vertex $v \in V(G)$ consists of the set of all vertices adjacent to v. The closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighborhood N(S) is defined to be $\bigcup_{v \in S} N(v)$ and the closed neighborhood of S is $N[S] = N(S) \cup S$. For any set H of vertices of G, the induced sub graph (H) is the maximal subgraph of Gwith vertex set H.

A subset **S** of **V** is called a dominating set if every vertex in **V** – **S** is adjacent to some vertex in **S**. A dominating set is a minimal dominating set if no proper subset of **S** is a dominating set of **G**. The domination number $\gamma(G)$ is the minimum cardinality taken over all minimal dominating sets of **G**. A γ –set is any minimal dominating set with cardinality γ . A proper coloring of **G** is an assignment of colors to the vertices of **G** such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of **G** is called chromatic number of **G** and is denoted by $\chi(G)$.

A color class dominating set of **G** is a proper coloring C of **G** with the extra property that every color class in C is dominated by a vertex in **G**. A color class dominating set is said to be a minimal color class dominating set if no proper subset of C is a color class dominating set of **G**. The color class domination number of **G** is the minimum cardinality taken over all minimal color class dominating sets of **G** and is denoted by $\gamma_{\chi}(G)$. This concept was introduced by A. Vijayalekshmi and A.E. Prabhain [1]

For any two graphs G and H, we define the cartesian product, denoted by $G \times H$, to be the graph with

vertex set $V(G) \times V(H)$ and edges between two vertices (u_1, v_1) and (u_2, v_2) iff either $u_1 = u_2$ and $v_1 v_2 \in E(H)$ or $u_1 u_2 \in E(G)$ and $v_1 = v_2$. A ladder graph can be defined as $P_2 \times P_n$, where $n \ge 2$ and is denoted by L_n . A triangular ladder graph TL_n , $n \ge 2$ is a graph obtained from L_n by adding the edges $u_i v_{i+1}, 1 \le i \le n-1$. The vertices of L_n are u_i and v_i , u_i and v_i are two paths in the graph L_n where $i - \{1, 2, ..., n\}$. A mobius ladder graph M_n is a graph obtained from the ladder graph $P_n \times P_2$ by joining the opposite end points of the two copies of p_n .

II. MAIN RESULTS

Definition 2.1. Let **G** be a graph. A color class dominating set of **G** is a proper coloring C of **G** with the extra property that every color classes in C is dominated by a vertex in **G**. A color class dominating set is said to be a minimal color class dominating set if no proper subset of C is a color class dominating set of **G**. The color class domination number of **G** is the minimum cardinality taken over all minimal color class dominating sets of **G** and is denoted by $\gamma_r(G)$.

Theorem 2.2. For the triangular ladder graph TL_n , $n \ge 2$,

$$\gamma_{\chi}(TL_n) = \begin{cases} n+1 & ifn = 2,5\\ n \forall n \ge 3 & andn \ne 5 \end{cases}$$

Proof:Let $V(TL_n) = \{u_i, v_i / 1 \le i \le n\}$ and

$$E(TL_n) = \{u_i u_{i+1} / i < n\} \cup \{v_i v_{i+1} / i < n\} \cup \{u_i v_{i+1} / i < n\}$$

When ≤ 5 , the proof is obvious.

Let $n \ge 6$ we have 4 cases.

Case(1). When $n \equiv 0 \pmod{4}$

Decompose TL_n into $\frac{n}{4}$ copies of TL_4 and $\gamma_{\chi}(TL_4) = 4.$ So $\gamma_{\chi}(TL_n) = n$

Case (2). When $n \equiv 1 \pmod{4}$. We consider 3 subcases.

Subcase 2.1 When $n \equiv 0 \pmod{3}$. In this case, decompose TL_n into $\frac{n}{3}$ copies of TL_3 and $\gamma_{\chi}(TL_3) = 3.8 \circ \gamma_{\chi}(TL_n) = n$.

Subcase 2.2 When $n \equiv 1 \pmod{3}$. TL_n can be obtained from TL_{n-4} followed by TL_4 and since $n - 4 \equiv 0 \pmod{3}$. So $\gamma_{\chi}(TL_n) - \gamma_{\chi}(TL_{n-4}) + \gamma_{\chi}(TL_4)$. By subcase 2.1 $\gamma_{\chi}(TL_n) = n$.

Figure 2.2 $\gamma_{\chi}(TL_{13}) = 13$

Figure 2.3 $\gamma_{7}(TL_{17}) = 17$

Case (3). When $m \equiv 2 \pmod{4}$. Here also we consider 3 subcases.

Subcase 3.1When $n \equiv 0 \pmod{3}$. By Subcase 2.1, $\gamma_{\chi}(TL_n) = n$.

 $TL_{18} \\$

Volume 18 Issue 1 October 2021

Figure 3.1 $\gamma_{\gamma}(TL_{18}) = 18$

Subcase 3.2 When $n \equiv 1 \pmod{3}$, TL_n is obtained from TL_{n-4} followed by

 TL_4 : Since $n - 4 \equiv 0 \pmod{3}$ and by subcase 3.1,

 $\gamma_{\chi}(TL_n) = \gamma_{\chi}(TL_{n-4}) + \gamma_{\chi}(TL_4) = n.$

Figure 3.2 $\gamma_{\chi}(TL_{10}) = 10$

Subcase 3.3. When $n \equiv 2 \pmod{3}$. TL_n is obtained from TL_{n-6} followed By TL_6 , since $n - 6 \equiv 0 \pmod{4}$, by case (1) $\gamma_{\chi}(TL_n) = \gamma_{\chi}(TL_{n-6}) + 2\gamma_{\chi}(TL_3) = n$.

Figure 3.3 $\gamma_{\chi}(TL_{14}) = 14$

Case (4). When $n \equiv 3 \pmod{4}$

Since $n - 3 \equiv 0 \pmod{d4}$ and TL_n is obtained from TL_{n-3} followed by TL_3 , by case (1) $\gamma_{\chi}(TL_n) = \gamma_{\chi}(TL_{n-3}) + \gamma_{\chi}(TL_3) = n$.

Figure $4\gamma_{\gamma}(TL_{15}) = 15$

Theorem 2.3. Let M_{π} be a mobius ladder graph.

Then
$$\gamma_{\chi}(M_n) = \begin{cases} \frac{2n}{3} & \text{if } n \equiv 0 \pmod{3} \\ \left\lfloor \frac{2n+4}{3} \right\rfloor & \text{otherwise} \end{cases}$$

Proof: Let M_{n} be amobius ladder graph with

$$V(M_n) = \{u_1, u_2, \dots, u_{n+1}, \dots, u_{2n}\} \text{ we take}$$

$$N(u_i) = \{u_{i-1}, u_{i+1}, u_{i+n}\} \text{ for } i = 2, 3, \dots, (n-1)$$

$$N(u_j) = \{u_{j-1}, u_{j+1}, u_{j-n}\} \text{ for } j = (n+2), (n+3) \dots, (2n-1)$$

$$N(u_1) = \{u_2, u_{n+1}, u_{2n}\},$$

$$N(u_n) = \{u_{n-1}, u_{n+1}, u_{2n}\},$$

$$N(u_{n+1}) = \{u_1, u_n, u_{n+2}\},$$

$$N(u_{2n}) = \{u_1, u_n, u_{2n-1}\}$$
We consider 3 cases
$$Case (1) \text{When } n \equiv 0 \pmod{3}$$
Assign new colors, say $2i - 1$, $2i \left(1 \le i \le \frac{n}{3}\right)$ to the vertices $N(u_i)$

for
$$t = 2, 5, ..., (n-1)$$
 and $t = (n+2), (n+5), ..., (2n-1)$,
we get a γ_{χ} - coloring of M_{χ} . So $\gamma_{\chi}(M_{\chi}) = \frac{2n}{3}$

Figure $5\gamma_{\chi}(M_9) = 6$.

Case (2) When $n \equiv 1 \pmod{3}$

Since $n-1 \equiv 0 \pmod{d3}$ and by case (1), $\gamma_{\chi} \left(M_{n-1} \right) = \frac{2(n-1)}{3}$. Assign two new colors, say $\frac{2(n-1)}{3} + 1$ and $\frac{2(n-1)}{3} + 2$ to the vertices $\{u_n\}$ and $\{u_{2n}\}$ respectively, we attain γ_{χ} -coloring of M_n . Thus $\gamma_{\chi} \left(M_n \right) = \left\lfloor \frac{2n+4}{3} \right\rfloor$

Case (3) When $n \equiv 2 \pmod{3}$

Since $n-2 \equiv 0 \pmod{3}$ and by case (1) $\gamma_{\chi} \binom{M_{n-2}}{3} = \frac{2(n-2)}{3}$. Assign two new color, say $(\frac{2(n-2)}{3})+1$ and $(\frac{2(n-2)}{3})+2$ to the vertices $\{u_{n-1}, u_{2n}\}$ and $\{u_n, u_{2n-1}\}$ respectively. We get a γ_{χ} - coloring of M_n . So $\gamma_{\chi}(M_n) = \left\lfloor \frac{2n+4}{3} \right\rfloor.$

 M_{14}

2

Figure
$$7_{\gamma_{14}}(M_{14}) = 10$$

.

REFERENCES

- A. Vijayalekshmi, A.E. Prabha; Introduction of color class dominating sets In Graphs, Malaya Journal of Matematik, Vol.8, No.4,2186-2189,2020.
 F. Harrary, Graph theory, Addition Wesley Reading Mass,1969.
 TerasaW. Haynes, Stephen T. Hedetniemi, Peter Slater, Domination in graphs, Marcel Dekker, New York,1998.