Color class Dominating sets in Triangular ladder and Mobius ladder Graphs

A. Vijayalekshmi
Associate Professor of Mathematics, S.T. Hindu College, Nagercoil-629002
Tamilnadu, India
Niju.P
Research Scholar, Reg.No.11922, Department of Mathematics, S.T. Hindu College, Nagercoil-629 002, Tamilnadu, India. (Affiliated to ManonmaniamSundaranar University, Tirunelveli-627012)

Abstract

Let $G=(V, E)$ be a graph. A color class dominating set of G is a proper coloring \mathcal{C} of G with the extra property that every color class in \mathcal{C} is dominated by a vertex in G. A colorclass dominating set is said to be a minimal color class dominating set if no proper subset of \mathcal{C} is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by $V_{\chi}(G)$. Here we obtain $\gamma_{Z}(G)$ for Triangular ladder graph and Mobius ladder graph.

Key words: Chromatic number, Domination number, Color class dominating set, Color class domination number. Mathematics Subject Classification: 05C15, 05C69.

I. INTRODUCTION

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in [2].

Let $G=(V, E)$ be a graph of order p. The open neighborhood $N(v)$ of a vertex $v \in V(G)$ consists of the set of all vertices adjacent tov. The closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, the open neighborhood $N(S)$ is defined to be $U_{v \in S} N(v)$ and the closed neighborhood of S is $N[S]=N(S)$ US. For any set H of vertices of G, the induced sub graph $\langle H\rangle$ is the maximal subgraph of G with vertex set H.

A subset S of V is called a dominating set if every vertex in $V-S$ is adjacent to some vertex in S. A dominating set is a minimal dominating set if no proper subset of S is a dominating set of G. The domination number $\gamma(G)$ is the minimum cardinality taken over all minimal dominating sets of G. A γ-set is any minimal dominating set with cardinality γ. A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$.

A color class dominating set of \mathcal{G} is a proper coloring \mathcal{C} of \mathcal{G} with the extra property that every color class in \mathcal{C} is dominated by a vertex in G. A color class dominating set is said to be a minimal color class dominating set if no proper subset of \mathcal{C} is a color class dominating set of G. The color class domination number of \boldsymbol{G} is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by $\gamma_{\mathcal{L}}(G)$.This concept was introduced by A. Vijayalekshmi and A.E. Prabhain [1]

For any two graphs G and H, we define the cartesian product, denoted by $G \times H$, to be the graph with
vertex set $V(G) \times V(H)$ and edges between two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ iff either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or $u_{1} u_{2} \in E(G)$ and $v_{1}=v_{2}$. A ladder graph can be defined as $P_{2} \times P_{n}$, where $n \geq 2$ and is denoted by L_{n}. A triangular ladder graph $T L_{n}, n \geq 2$ is a graph obtained from L_{n} by adding the edges $u_{i} v_{i+1}, 1 \leq i \leq n-1$. The vertices of L_{n} are u_{i} and v_{i}, u_{i} and v_{i} are two paths in the graph L_{n} where $i-\{1,2, \ldots \pi\}$. A mobius ladder graph M_{n} is a graph obtained from the ladder graph $P_{n} \times P_{2}$ by joining the opposite end points of the two copies of p_{n}.

II. MAIN RESULTS

Definition 2.1. Let \boldsymbol{G} be a graph. A color class dominating set of \boldsymbol{G} is a proper coloring \mathcal{C} of \mathcal{G} with the extra property that every color classes in \mathcal{C} is dominated by a vertex in G. A color class dominating set is said to be a minimal color class dominating set if no proper subset of \mathcal{C} is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by $\gamma_{\mathcal{Z}}(G)$.

Theorem 2.2. For the triangular ladder graph $T L_{n}, n \geq 2$,
$y_{\chi}\left(T L_{n}\right)=\left\{\begin{array}{c}n+1 \quad \text { if } n=2,5 \\ n \forall n \geq 3 \text { and } n \neq 5\end{array}\right.$
Proof:Let $V\left(T L_{n}\right)=\left\{u_{i}, v_{i} / 1 \leq i \leq n\right\}$ and
$E\left(T L_{n}\right)=\left\{u_{i} u_{i+1} / i<n\right\} \cup\left\{v_{i} v_{i+1} / i<n\right\} \cup\left\{u_{i} v_{i+1} / i<n\right\}$.
When ≤ 5, the proof is obvious.
Let $n \geq 6$ we have 4 cases.
Case(1). When $n \equiv 0(\bmod 4)$
Decompose $T L_{n}$ into $\frac{n}{4}$ copies of $T L_{4}$ and $y_{X}\left(T L_{4}\right)=4, \operatorname{Soy}_{X}\left(T L_{n}\right)=n$
$\begin{array}{llllllllllll}2 & 1 & 2 & 4 & 5 & 6 & 5 & 8 & 9 & 11 & 9 & 11\end{array}$
TL_{12}

1

Figure 1 $\quad y_{K}\left(T L_{12}\right)=12$.

Case (2).When $n=1(\bmod 4)$. We consider 3 subcases.
Subcase 2.1 When $n \equiv 0(\bmod 3)$. In this case, decompose $T L_{n}$ into $\frac{n}{3}$ copies of $T L_{3}$ and $y_{\chi}\left(T L_{3}\right)=3 . \operatorname{So\gamma }_{\chi}\left(T L_{n}\right)=n$.

Subcase 2.2When $n \equiv 1(\bmod 3) \cdot T L_{n}$ can be obtained from $T L_{n-4}$ followed by $T L_{4}$ and since $n-4 \equiv 0(\bmod 3)$. So $\gamma_{\chi}\left(T L_{n}\right)-y_{\chi}\left(T L_{n-4}\right)+y_{\chi}\left(T L_{4}\right)$. By subcase $2.1 \gamma_{Y}\left(T L_{n}\right)=n$.

$T L_{13}$

Figure 2.2 $\gamma_{X}\left(T L_{13}\right)=13$

Subcase 2.3When $n \equiv 2(\bmod 3)$. Since $n-4 \equiv 1(\bmod 4)$ and $(n-4) \equiv 1(\bmod 3)$, by subcase $2.2, y_{x}\left(T L_{n}\right)=y_{x}\left(T L_{n-4}\right)+\gamma_{x}\left(T L_{4}\right)=n$.

TL 17

Figure $2.3 \quad \gamma_{\gamma}\left(T L_{17}\right)=17$

Case (3).When $n \equiv 2(\bmod 4)$. Here also we consider 3 subcases.
Subcase 3.1When $n \equiv 0(\bmod 3)$. By Subcase $2.1, \gamma_{\chi}\left(T L_{n}\right)=n$.
TL_{18}

Figure 3.1 $\quad \gamma_{\gamma}\left(T L_{18}\right)=18$

Subcase 3.2 When $n \equiv 1(\bmod 3), T L_{n}$ is obtained from $T L_{n-4}$ followed by $T L_{4}$. Since $n-4 \equiv 0(\bmod 3)$ and by subcase 3.1 ,
$\gamma_{\chi}\left(T L_{n}\right)=\gamma_{\chi}\left(T L_{n-4}\right)+\gamma_{\chi}\left(T L_{4}\right)=n$.

Figure 3.2 $\quad \gamma_{\chi}\left(T L_{10}\right)=10$

Subcase 3.3. When $n \equiv 2(\bmod 3) . T L_{n}$ is obtained from $T L_{n-6}$ followed $\operatorname{ByT}_{6} L_{6}$, since $n-6 \equiv 0(\bmod 4)$, by case (1)
$\gamma_{\chi}\left(T L_{n}\right)=\gamma_{\gamma}\left(T L_{n-6}\right)+2 \gamma_{\chi}\left(T L_{3}\right)=n$.
$\mathrm{TL}_{14} 3$

1

Figure $3.3 \quad \gamma_{\gamma}\left(T L_{14}\right)=14$

Case (4). When $n \equiv 3(\bmod 4)$

Since $n-3 \equiv 0(\bmod 4)$ and $T L_{n}$ is obtained from $T L_{n-3}$ followed by $T L_{3}$, by $\operatorname{case}(1) \gamma_{\chi}\left(T L_{n}\right)=\gamma_{\chi}\left(T L_{n-3}\right)+\gamma_{\kappa}\left(T L_{3}\right)=n$.

TL ${ }_{15}$

Figure $4 \gamma_{\lambda}\left(T L_{15}\right)-15$

Theorem 2.3. Let M_{n} be a mobius ladder graph.
Then $\gamma_{K}\left(M_{n}\right)=\left\{\begin{array}{l}\frac{2 n}{3} \text { ifn }=0(\bmod 3) \\ {\left[\frac{2 n+4}{3}\right] \text { otherwise }}\end{array}\right.$
Proof: Let M_{n} be amobius ladder graph with
$V\left(M_{n}\right)=\left\{u_{1}, u_{2}, \ldots \ldots u_{n+1}, \ldots u_{2 n}\right\}$. we take
$N\left(u_{i}\right)=\left\{u_{i-1}, u_{i+1}, u_{i+n}\right\}$ for $i=2,3, \ldots . .(n-1)$
$N\left(u_{j}\right)=\left\{u_{j-1}, u_{j+1}, u_{j-n}\right\}$ for $j=(n+2),(n+3) \ldots \ldots .(2 n-1)$
$N\left(u_{1}\right)=\left\{u_{2}, u_{n+1}, u_{2 n}\right\}$,
$N\left(u_{n}\right)=\left\{u_{n-1}, u_{n+1}, u_{2 n}\right\}$
$N\left(u_{n+1}\right)=\left\{u_{1}, u_{n}, u_{n+2}\right\}$,
$N\left(u_{2 n}\right)=\left\{u_{1}, u_{n}, u_{2 n-1}\right\}$
We consider 3 cases
Case (1)When $n \equiv 0(\bmod 3)$
Assign new colors, say $2 i-1,2 i\left(1 \leq i \leq \frac{n}{3}\right)$ to the vertices $N\left(u_{i}\right)$
fort $=2,5, \ldots \ldots \ldots \ldots(n-1)$ and $t=(n+2),(n+5) \ldots \ldots \ldots(2 n-1)$,
we get a γ_{χ} - coloring of M_{n}. So $\gamma_{X}\left(M_{n}\right)=\begin{gathered}2 n \\ 3\end{gathered}$

2 2

11

5

Figure $5 \gamma_{\chi}\left(M_{9}\right)=6$.

Case (2)When $n \equiv 1(\bmod 3)$

Since $n-1 \equiv 0(\bmod 3)$ and by case $(1), \gamma_{\chi}\left(M_{n-1}\right)=\frac{2(n-1)}{3}$. Assign two new colors, say $\frac{2(n-1)}{3}+1$ and $\frac{2(n-1)}{3}+2$ to the vertices $\left\{u_{n}\right\}$ and $\left\{u_{2 n}\right\}$ respectively, we attain γ_{χ}-coloring of M_{n}. Thus $\gamma_{C}\left(M_{n}\right)=\left\lfloor\frac{2 n+4}{3}\right\rfloor$

Case (3) When $n \equiv 2(\bmod 3)$

Since $n-2 \equiv 0(\bmod 3)$ and by case (1) $\gamma_{\chi}\left(M_{n-2}\right)=\frac{2(n-2)}{3}$. Assign two new color, say $\left(\frac{2(n-2)}{3}\right)+1$ $\operatorname{and}\left(\frac{2(n-2)}{3}\right)+2$ to the vertices $\left\{u_{n-1}, u_{2 n}\right\}$ and $\left\{u_{n}, u_{2 n-1}\right\}$ respectively. We get a γ_{χ}-coloring of M_{n}. So $\gamma_{7}\left(M_{n}\right)=\left\lfloor\frac{2 n+4}{3}\right\rfloor$.
M_{14}
22

Figure $7_{\gamma_{\ell}}\left(M_{14}\right)=10$

REFERENCES

[1] A. Vijayalekshmi, A.E. Prabha; Introduction of color class dominating sets In Graphs, Malaya Journal of Matematik, Vol.8, No.4,2186-2189,2020.
[2] F. Harrary, Graph theory, Addition - Wesley Reading Mass,1969.
[3] TerasaW. Haynes, Stephen T. Hedetniemi, Peter Slater, Domination in graphs, Marcel Dekker, New York, 1998.

