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Abstract - Evaporation, which is one of the most important component of hydrological cycle, is under the effect of many 
dynamic factors. Due to its complex structure, it is a difficult parameter to predict. In this study, estimation of 
evaporation was performed using support vector machines. Different input combinations of metrological data including 
maximum (Max. Temp), minimum (Min. Temp) air temperature, relative humidity (RH), wind speed (WS) and sunshine 
hours (SH) were used to estimate evaporation (Evap). Support vector Regression models with different kernel functions 
were tried and their performance was evaluated using statistical tests Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE) , Mean Square Error (MSE) and the coefficient of determination (R2).  According to performance criterion, 
the most successful model for evaporation estimation was determined as Model ε-SVR M-1 with R2(0.85) with radial basis 
kernel function. 
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I. INTRODUCTION 

Evaporation, as a major component of the hydrologic cycle, it plays an important role in water resources 
development and management. Water scarcity is a major issue of the semi –arid region. The loss of water from open 
bodies in form of evaporation is inevitable. Therefore, the determination of Evaporation (E) in reservoir is 
necessary. Different methods for prediction of evaporation are used since 1976,(Stewart and Rouse, 1976). Later 
Bruin 1978, Anderson and Jobson, 1982; Abtew, 2001; Murthy and Gawande, 2006).  Deswal and Pal (2008). They 
have successfully exercised Artificial Neural Network (ANN) for the resolution of evaporation in reservoirs. ANN is 
a black box approach having some limitations, low generalization capability, arriving at local minima, overtraining 
problem and absence of probabilistic output (Kecman, 2001). As a result, alternative methods are needed, which can 
predict evaporation more accurately. 

 In this study Support Vector Machine (SVM) is used for predicting evaporation in the reservoir. SVMs 
have been used for pattern recognition problems. Lately, nonlinear regression estimation is been solved by 
introducing ε-insensitive loss function (Mukherjee et al., 1997; Vapnik et al., 1997; Samui, 2008). The SVM applies 
the structural risk minimisation principle (SRMP), which has been recorded to be superior to the more traditional 
Empirical Risk Minimization Principle (ERMP) which is employed by several other modelling techniques (Osuna et 
al., 1997; Gunn, 1998).  SRMP diminishes an upper bound of the generalisation error whereas, ERMP minimizes the 
training error. In this way, it produces the better generalisation than traditional techniques.  
The objective of this study was to investigate usability of support vector regression (SVR) methods for estimating 
evaporation using meteorological data such as maximum and minimum temperature (◦C), wind speed (km/hr), 
relative humidity (%), and sunshine hours (hrs). 
 

Support Vector Machine  

Support vector machine (SVM), a supervised learning model which is based on statistical learning theory is 
introduced by Vapnik (1995).Support vector regression (SVR) is generally used to describe regression with SVM. It 
performs classification by establishing an N-dimensional hyper plane that optimally separates the data into two 
categories. SVM models are closely related to neural networks. A detailed principles and algorithms of SVM can be 
found in Müller et al. (1997). The basic idea is to map the data x into a high dimensional feature space via a 
nonlinear mapping π and to do linear regression in this space (Boser et al. 1992; Vapnik 1995).  
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The regression estimation with SVR is to estimate a function according to a given data set {(xi,yi)}i n, 
where xi denotes the input vector; yi denotes the output value and n is the total number of data sets.  

In SVM, the regression function is estimated by the following function: 

 

 

where ω is the weight vector, and b is a bias.  ( ) denotes a nonlinear transfer function that maps the input 
vectors into a high-dimensional feature space in which theoretically a simple linear regression can cope with the 
complex nonlinear regression of the input space. The coefficients ω and b can be estimated by minimizing the 
following regularized risk function: 

 

 

 

 

where C is a positive constant named penalty parameter, Lε(f(xi),yi) is called ε-insensitive loss Support-
Vector-Machine-Based Models function that measures the empirical risk of the training data; (1/2)||ω||2 is the 
regularization term; ε is the tube size of SVM. 

Finally, a nonlinear regression function is obtained using the following expression. 

 

where ‘αi’ and ‘αi *’are the introduced Lagrange multipliers.  

With the utilization of the Karush- Kuhn-Tucker (KKT) conditions, only a limited number of coefficients 
will not be zero among αi and αi *. The related data points could be revealed to the support vectors. k(xi,x) refers to 
kernel function describes the inner product in the D-dimension feature space. 

 

 

It can be shown that any symmetric kernel function k satisfying Mercer’s condition corresponds to a dot 
product in some feature space (Boser et al. 1992).  

The selection of the kernel function to be used and of model parameters plays a vital role to determine the 
SVR performance. However, there is no any determinant criterion with respect to selection of either kernel function 
or model parameters (Lin 2006). 

The three factors which have potent in SVR performance are ε error term, C configuration factor, and type 
of kernel function, thereby the parameter of the kernel function (Ekici 2007). The kernel functions commonly used 
in SVR applications are given in the Table:1. 
 

Table:1 Common Kernel Functions 

Kernel types Kernel functions 

Linear  

Polynomial  

Radial Basis Function (RBF)  

Sigmoid (S-shaped).  
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The SVR applications can be carried out  in two different models such as ε-SVR and υ-SVR. In this study, 
ε-SVR model and υ-SVR model along with the four kernel functions are studied. 

The program known as DTREG Software has been used to estimate evaporation by the SVR method. 
 

II. MATERIAL AND METHOD 

1. Study area 

The area selected for the present study is the Nath Sagar Project also called as Jayakwadi Project located 
(19°29’8.7” N latitude and 75°22'12”E longitude) in Marathwada region of Maharashtra, India. It is one of the 
largest multipurpose irrigation project of Maharashtra State. The water is mainly used for irrigation in the drought 
prone regions of Maharashtra state. The water also serves the purpose of drinking and industrial use. Jayakwadi is 
noted among the largest earthen dams in Asia.  

 

Its height is roughly about 41.30 m and length of 9,998 m (10 km approx) with a total storage capacity of 2,909 
MCM (million cubic meters) and effective live storage capacity is 2,171 MCM. The total catchment basin of dam is 
21,750 km2. The Nath Sagar reservoir formed by Jayakwadi Dam is fed by the Godavari and Pravara rivers, the 
reservoir is about 55 km long and 27 km wide. The total submergence area produced by the reservoir is approx 
36,000 hectares. 
 
2. Data Collection  

The metrological data of the Nath Sagar reservoir is obtained from the Indian Metrological Department, Pune. 
The metrological data includes maximum (Max. Temp) and minimum (Min. Temp) air temperature, relative 
humidity(RH), wind speed(WS), sunshine hours(SH) and evaporation (Evap).Daily data sets for a period of 2000-
2013 were available. The data of 2000to 20010 i.e. data of 7 years was considered for the selection of the model and 
4 years for validation. This data set was divided into training and testing data sets 70% training and 30% testing. The 
best model satisfying this data was further used to predict the data for the remaining years. The meteorological data 
used in this study were divided as input and output parameters to determine the effects of meteorological factors on 
evaporation. The in Input data were maximum and minimum air temperature (T), relative humidity (RH), wind 
speed (WS), and sunshine hours (SH); output data was evaporation (Evap). The monthly statistical parameters of the 
climatic data are given in Table 2; 
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Table 2. Descriptive statistics of the Nath Sagar Reservoir  

Sr 
no. 

Variables* Units 
Minimum 
Observed 

Maximum 
Observed 

Mean 
Standard 
Deviation 

Correlation 
coefficient 
with 
evaporation 

1 Maximum Air 
Temperature 

°C 19.20 43.30 32.67 4.17 0.76 

2 Minimum Air 
Temperature 

°C 5.40 30.80 18.88 4.94 0.37 

3 Wind Speed Km/hr 1.00 23.50 6.94 4.13 0.27 
4 Sunshine Hours Hours 0.19 11.80 7.55 2.73 0.43 

5 Relative Humidity % 13.50 98.50 56.36 19.33 -0.50 

6 Evaporation mm/day 0.20 20.40 4.18 2.13 1.00 

 
Statistical analysis of the meteorological parameters given in Table 1 indicated that all have positive 

correlation coefficient with evaporation except relative humidity. The highest correlation coefficient is 0.76 of 
maximum air temperature followed by relative humidity of (-0.5), sunshine hours with (0.43) and (0.37) with 
minimum air temperature. The lowest correlation coefficient is with wind speed of (0.27).  

 
III. METHODOLOGY 

1. Selection of inputs 
The selection of input data was done on the bases of the gravity of metrological parameter on evaporation. The 

input layer includes the input variables: temperature, relative humidity, sunshine hours and wind speed. Four SVM 
models are proposed ε-SVR M1, ε-SVR M2, ε-SVR M3 and M ε-SVR 4  having five, four, three and two input 
variables respectively. The preference of variables in the model, is done on the basis of correlation coefficient. The 
highest correlation value, positive or negative enters first in the model Table: 3 and the variable with the lowest 
correlation value leaves first.   
 

Table:3 SVM Input Structure 

Sr. No. Model Max. Temp Relative 
Humidity 

Sunshine 
Hours 

Min. Temp. Wind 
speed 

1 ε-SVR M-1  I I I I I 
2 ε-SVR M-2 I I I I - 
3 ε-SVR M-3 I I I - - 
4 ε-SVR M-4 I I  - - 

 
2. Selection of model classification or regression:- 
 

For classification models with a absolute target variable, you can select either C-SVC or ν-SVC models. 
For regression models with a uninterrupted target variable, you can select either ε-SVR or ν-SVR models. For 
many applications, the results generated by the various models are quite similar. There is no way to predict in 
advance which method will perform better for a specific problem, so it is best to undertake each one.  
 

3. Selection of Kernel function:- 
SVM models are built around a kernel function that transforms the input data into an n-dimensional space 

where a hyperplane are often constructed to partition the data. DTREG furnishes four kernel functions, Linear, 
Polynomial, Radial Basis Function (RBF) and Sigmoid (S-shaped). There is no way  to predict which kernel 
function will suit best for an application, but the RBF function has been found to do best job in the majority of 
cases. An SVM model employing a radial basis function kernel has the architecture of an RBF network. 
However, the tactic for determining the number of nodes and their centers is different from standard RBF 
networks with the centers of the RBF notes on the support vectors. 
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4. Selection Of Optimum Model 

For SVM model, the design values of C, ε and γ have to be determined for best performance of the SVM 
Model. Researches use trial and error approach for determination of best performance of SVM models 
(Sivapragasam and Nitin Muttil, 2004; Khan and Coulibaly, 2006; Pal, 2006; Goh and Goh, 2007; Pal and Deswal, 
2008; Samui and Sitharam, 2008; Das et al., 2009). The trial and error approach has been done based on the 
following guidelines: A large C assigns higher penalties to errors so that the regression is trained to minimize error 
with lower generalisation, whereas a small C assigns fewer penalties to errors; this allows the minimisation of 
margin with errors, thus, higher generalisation ability. If C approaches to infinitely large, SVM would not allow the 
occurrence of any error and result in a complex model, whereas when C approaches to zero, the result would tolerate 
a large amount of errors and the model would be less complex. With regards to the selection of ε, if ε is too large, 
too few support vectors are selected, which leads to a decrease of the final prediction performance (Thissen et al., 
2004). If ε is too small, many support vectors are selected which leads to the risk of over fitting. A large γ indicates a 
stronger smoothing of Gaussian kernel. So, the trial and error approach has not been done blindly. The adopted trail 
and approach has robust scientific justification. The developed SVM have been already validated for testing dataset. 
The performance of the testing dataset is very good for SVM model. 
 
5. Model Evaluation 
Models performance of each model was studied by judging its statistical performance. Statistical tests were used in 
this study follow the suggestion by Willmott  and Jacovides and Kontoyiannis . The statistical parameters used to 
test the statistical importance of the evaporation estimate, obtained using a given model are: 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE) , Mean Square Error (MSE) and the coefficient of 
determination (R2).The following equations were used for the computation of the parameters.  

                

                

                 

            

  

                 

where, Ei,obs is observed evaporation, mm/day, Ei,pred is predicted evaporation, mm/day and n is number of data 
pairs. 
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Figure:2. Archetecture of Support Vector Model 
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IV. RESULTS AND DISCUSSION 
 
The data set were applied to the support vector regression models to estimate the amount of evaporation 

from the Nath Sagar reservoir  has been divided into two sub-sets; a training dataset to build the model, and a testing 
dataset to estimate the model performance. In this study data sets of 2000-2006 are considered as the training dataset 
and 2007-2010 are considered as the testing dataset. Researchers have used different data division between testing 
and training datasets and it generally varies with problems. There is no thumb rule for data division between training 
and testing. In this study, adopted data division between training and testing is 70% (i.e. 70% of the available data 
was used for training) has been given best result. The training and testing datasets have been chosen randomly form 
the original dataset. By using the inputs maximum (Max. Temp) and minimum(Min. Temp) air temperature, relative 
humidity(RH), wind speed(WS), sunshine hours(SH) and evaporation(Evap)  different combinations of 
meteorological parameters were used to find the most successful SVR model for the estimation of evaporation 
amount. 

In order to eliminate dimension difference, all the metrological parameters were scaled to [0, 1] before 
input in the SVM model. The formula is defined as following 

 
Where X=standardized metrological data of Xi;  Xmax=  Maximum metrological data; Xmin=minimum 

metrological data  
After estimation of the output values the values are transformed back to original scale by.  

 
 

The SVR applications can be performed in two different models such as ε-SVR and υ-SVR. The inputs 
were fed to both the models with all kernel functions, Linear, Polynomial, Radial Basis Function (RBF) and 
Sigmoid (S-shaped) Table:4  to decide the best kernel function. In this study, ε-SVR model with Radial Basis 
Function (RBF) and Sigmoid (S-shaped) is preferred. 
 

Table:4. Comparison between Linear, Polynomial, Radial Basis Function (RBF) and Sigmoid (S-shaped) Kernal function 

Kernel Function Linear Polynomial RBF Sigmoid 
Training RMSE 0.905 0.931 0.905 0.94 

MAE 0.777 0.813 0.777 0.808 
MSE 0.820 0.868 0.819 0.883 
R^2 0.72370 0.728 0.742 0.7430 

Testing RMSE 0.963 0.965 0.963 0.9428 
MAE 0.822 0.834 0.822 0.8198 
MSE 0.9275 0.9315 0.927 0.8892 
R^2 0.7099 0.708 0.7199 0.7219 

 
The different input combinations on the basis of correlation coefficients were used for the evaporation 

estimation Table. These models decided the model, the first model ε-SVR M-1 with five inputs Maximum 
Temperature, Relative Humidity, Sunshine Hours, Minimum Temperature and Wind Speed. The second model ε-
SVR M-2with four inputs Maximum Temperature, Relative Humidity, Sunshine Hours and Minimum Temperature. 
The third model ε-SVR M-3with three inputs Maximum Temperature, Relative Humidity and Sunshine Hours. And 
the Fourth model with two inputs Maximum Temperature and Relative Humidity. 
 

Table:5 Input Combinations for different models 
Sr. No SVR models No. Of Inputs Input Combinations 
1 ε-SVR M-1 5 Max. Temp , RH, SH, Min. Temp., WS 
2 ε-SVR M-2 4 Max. Temp , RH, SH, Min. Temp 
3 ε-SVR M-3 3 Max. Temp , RH, SH 
4 ε-SVR M-4 2 Max. Temp , RH 

 
Different combinations of C, ᵋand γ have been tried to get the best results. The evaluation criteria of the 

most successful ε-SVR (C, ᵋand γ ) models obtained from these experiments are listed  in Table:6  for training and 
testing data. 
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Table:6 Results obtained from the ε-SVR model for different input combinations 

 Model 
Name 

I/P Kernel 
Function 

Model Parameters R2 RMS
E 

MAE MSE 
C ᵋ γ 

T
ra

in
in

g 

ε-
SVR 
M-1  

Max. 
Temp , 
RH, SH, 
Min. 
Temp, WS 

RBF 482.2
9 0.001 0.003 0.722 0.831 0.786 0.689 

sigmoid 1477.
1 

0.001 0.012 0.721 0.798 0.791 0.630 

ε-
SVR 
M-2 

Max. 
Temp , 
RH, SH, 
Min. 
Temp.,  

RBF 0.305
1 

0.001 0.68 
0.682
7 

0.765
3 

0.862 0.585 

sigmoid 427.7
2 

0.001 0.036 
0.649
9 

0.772 0.894 0.595 

ε-
SVR 
M-3 

Max. 
Temp , 
RH, SH,  

RBF 
0.669 0.001 0.408 0.699 

0.732
7 

0.855 0.536 

sigmoid 
0.861 0.001 0.407 0.662 

0.729
6 

0.868
3 

0.532 

ε-
SVR 
M-4 

Max. 
Temp , 
RH,  

RBF 
1.105 0.001 0.407 0.684 

0.696
4 

0.862 0.484 

sigmoid 
499 

0.001
1 

0.077 0.646 0.699 
0.858
7 

0.488 

T
es

ti
ng

 

ε-
SVR 
M-1  

Max.Tem
p , RH, 
SH, 
Min.Temp
, WS 

RBF 482.2
9 

0.001 0.003 0.850 0.594 0.909 0.350 

sigmoid 
1477.
1 

0.001 0.012 0.894 0.511 0.900 0.261 

ε-
SVR 
M-2 

Max. 
Temp, 
RH, SH, 
Min. 
Temp.,  

RBF 0.305
1 

0.001 0.68 0.845 0.572 0.744 0.327 

sigmoid 
427.7
2 

0.001 0.036 0.798 
0.733
8 

0.838 0.538 

ε-
SVR 
M-3 

Max. 
Temp , 
RH, SH,  

RBF 0.669 0.001 0.408 0.866 0.594 0.785 0.35 
sigmoid 

0.861 0.001 0.407 
0.807
2 

0.682
6 

0.755 0.465 

ε-
SVR 
M-4 

Max. 
Temp , 
RH,  

RBF 
1.105 0.001 0.407 

0.823
2 

0.818 0.762 0.669 

sigmoid 
499 0.001 0.077 0.823 0.661 

0.792
3 

0.436 

 
According to the results obtained from ε-SVR models for different input combinations; the most successful 

model for both kernel functions was determined as ε-SVR M-1 and ε-SVR M-3 model. The models ε-SVR M-1 and 
ε-SVR M-3 gave a comparative higher value of R2 in radial basis function of 0.72 and 0.699 respectively for training 
data set and a value of 0.85and 0.866 for testing data sets. Model ε-SVR M-1 when used with sigmoid kernel 
function gave a R2 value of 0.721in training and a value of 0.894 in testing. Model ε-SVR M-3 gave aR2 value of 
0.662 in training and 0.807 in testing when used with sigmoid kernel function. The models ε-SVR M-2 and ε-SVR 
M-4 gave better results for radial basis functions for testing data sets rather than training datasets.  Comparing the 
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results of all models for RBF and Sigmoid function for training and testing model ε-SVR M-1 performed well for 
both the functions for R2.  

Literature observes that the models obtained by using radial basis kernel function were more successful. It is 
observed that the models set up with radial basis function resulted more successfully evaluated in terms of both 
training and testing data. Model ε-SVR M-1 with R2(0.85),RMSE(0.594), MAE(0.90), and MSE(0.35) was more 
successful than other  models. Although the results for testing data belonging to sigmoid function seemed to be less 
successful than radial basis, generally it’s possible to say that Radial basis kernel function was more successful for 
ε-SVR M-1 model. 

V. CONCLUSIONS 
 
The accurate estimation of evaporation is one of the most important issues in the management of water 

resources. This work investigated the applicability of SVM for evaporation in Nath Sagar Reservoir using available 
metrological data.  

Four models were developed using different combinations of metrological data including Maximum 
Temperature, Relative Humidity, Sunshine Hours, Minimum Temperature and Wind Speed for estimation of 
evaporation. The developed SVM models were tested validated on the basis of Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), Mean Square Error (MSE) and the coefficient of determination (R2).  The result 
demonstrates the applicability of Support Vector Regression model for estimating evaporation with available 
metrological data. 
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