Color Class Dominating sets in Open Ladder and Slanting Ladder Graphs

Niju.P*, A.Vijayalekshmi**

 **Associate Professor of Mathematics, S.T.Hindu College, Nagercoil-629002 Tamilnadu,India,Email:vijimath.a@gmail.com
*Research Scholar, Reg.No.11922, Department of Mathematics, S.T.Hindu College, Nagercoil-629 002, Tamilnadu, India.
(Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012)

Abstract - Let G = (V, E) be a graph. A color class dominating set of G is a proper coloring C of G with the extra property that every color class in C is dominated by a vertex in G. A color class dominating set is said to be a minimal color class dominating set if no proper subset of C is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by $\gamma_{\chi}(G)$. Here we obtain $\gamma_{\chi}(G)$ for Open ladder graph and slanting ladder graph.

Key words: Chromatic number, Domination number, Color class dominating set, Color class domination number. Mathematics Subject Classification: 05C15, 05C69

I. INTRODUCTION

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in [3].

Let G = (V, E) be a graph of order p. The open neighborhood N(v) of a vertex $v \in V(G)$ consists of the set of all vertices adjacent to v. The closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighborhood N(S) is defined to be $\bigcup_{v \in S} N(v)$ and the closed neighborhood of S is $N[S] = N(S) \cup S$. For any set H of vertices of G, the induced sub graph $\langle H \rangle$ is the maximal subgraph of G with vertex set H.

A subset S of V is called a dominating set if every vertex in V - S is adjacent to some vertex in S. A dominating set is a minimal dominating set if no proper subset of S is a dominating set of G. The domination number $\gamma(G)$ is the minimum cardinality taken over all minimal dominating sets of G. A γ - set is any minimal dominating set with cardinality γ . A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$.

The join $G_1 + G_2$ of graphs G_1 and G_2 with disjoint vertex set V_1 and V_2 and edge sets E_1 and E_2 is the graph union $G_1 \cup G_2$ together with each vertex in V_1 is adjacent to every vertices in V_2 . An Open ladder $O(L_p), p \ge 2$ is from two paths of

length n - 1 with

 $V(G) = \{u_i u_{i+1}, v_i v_{i+1} \ /1 \le i \le n\} \cup \{u_i v_i \ /2 \le i \le n-1\}.$ A Slanting ladder graph SL_n is the graph obtained from two paths $u_1 u_2 \ldots u_n$ and $v_1 v_2 \ldots v_n$ by joining each u_i with v_{i+1} . In this paper, we obtain $\gamma_{\chi}(G)$ for Open ladder graph and slanting ladder graph.

II. MAIN RESULTS

Definition 2.1. Let G be a graph. A color class dominating set of G is a proper coloring \mathcal{C} of G with the extra property that every color classes in \mathcal{C} is dominated by a vertex in G. A color class dominating set is said to be a minimal color class dominating set if no proper subset of \mathcal{C} is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating sets of \mathcal{C} and is denoted by $\gamma_{\mathcal{X}}(G)$.

Theorem 2.2. For the Open ladder graph O $(L_p) p \ge 2$,

$$\begin{split} \gamma_{\chi}(\circ(L_{p})) = & \gamma_{\chi}(\circ(L_{2n})) = \begin{cases} \frac{2n}{3} & \text{if } n \equiv 0 \pmod{3} \\ \binom{2(n-2)}{3} + 2 & \text{otherwise} \end{cases} \\ \text{Let } L_{p} = L_{2n} = P_{2} \times P_{n} \text{ where } n \geq 2 \\ \text{Let } V\left(O(L_{p})\right) = \{u_{1}, u_{2}, \dots, u_{n}, v_{1}, \dots, v_{n}\} \text{and} \\ E\left(O(L_{p})\right) = \{u_{i}, u_{i+1}, v_{i}v_{i+1} \ /i = 1, 2, 3...(n-1)\} \cup \{u_{i}v_{i} \ /2 \leq i \leq n-1\} \\ \text{We consider three cases} \\ \text{Case (i). When } n \equiv 0 \pmod{3} \end{split}$$

Decompose L_p into $\frac{p}{3}$ copies of L_6 . Assign $\frac{p}{3}$ distinct colors say 2i - 1 and 2i $(1 \le i \le \frac{p}{6})$ $\{u_{3i-2}, v_{3i-1}, u_{3i}\}$ and $\{v_{3i-2}, u_{3i-1}, v_{3i}\}$ respectively, we get a γ_{χ} - coloring. So $\gamma_{\chi} \left(O(L_p)\right) = \frac{p}{3} = \frac{2n}{3}$ $2 \xrightarrow{1}{3} \xrightarrow{4}{3} \xrightarrow{5}{6} \xrightarrow{5}{7} \xrightarrow{8}{7}$ $1 \xrightarrow{2}{4} \xrightarrow{1}{3} \xrightarrow{4}{4} \xrightarrow{3}{5} \xrightarrow{6}{6} \xrightarrow{5}{7} \xrightarrow{8}{7}$ $1 \xrightarrow{2}{4} \xrightarrow{1}{3} \xrightarrow{4}{4} \xrightarrow{6}{5} \xrightarrow{6}{6} \xrightarrow{8}{7} \xrightarrow{8}{7}$ $1 \xrightarrow{2}{4} \xrightarrow{1}{3} \xrightarrow{4}{4} \xrightarrow{6}{5} \xrightarrow{6}{6} \xrightarrow{8}{7} \xrightarrow{8}{7}$

Case (ii). When $n \equiv 1 \pmod{3}$ Since $n - 1 \equiv 0 \pmod{3}$, as in Case(i), $\gamma_{\chi}^{d} (L_{2(n-1)}) = \frac{2(n-1)}{3}$. Assign two distinct colors say $(\frac{2(n-1)}{3}) + 1$ and $(\frac{2(n-1)}{3}) + 2$ to the vertices $\{u_n\}$ and $\{v_n\}$ respectively, we get the required coloring. Thus $\gamma_{\chi} \left(O(L_p) \right) = \left[\frac{2(n-2)}{3} \right] + 2$. 1 2 1 3 4 3 5 6 5 7 8 7 10 2 1 2 4 3 4 6 5 6 8 8 9 Figure 1.2 $\gamma_{\chi} \left(O(L_{12}) \right) = 10$

Case(iii). When
$$n \equiv 2 \pmod{3}$$
.
Since $n-2 \equiv 0 \pmod{3}$, as in case(i) $\gamma_{\chi}^{d} (L_{2(n-2)}) = \frac{2(n-2)}{3}$. Assign two distinct colors say

Theorem 2.3. Let $SL_p = SL_{2n}$ be a Slanting ladder graph. Then

$$\gamma_{\chi}(SL_p) = \gamma_{\chi}(SL_{2n}) = \begin{cases} \left|\frac{2(n-3)}{3}\right| + 2 & \text{if } 2n \equiv 0 \pmod{4} \\ \left|\frac{2(n-1)}{3}\right| + 1 & \text{if } 2n \equiv 2 \pmod{4} \end{cases}$$

Proof. Let $SL_p = SL_{2n}$ $(n \ge 3)$ be a Slanting ladder graph with

$$V(L_{2n}) = \{u_1, u_2, u_3 \dots u_n, v_1, v_2 \dots v_n\} \text{ and } E(G) = \{u_i u_{i+1} \ / \ i < n\} \cup \{v_i v_{i+1} \ / \ i < n\} \cup \{u_i v_{i+1} \ / \ 1 \le i \le n-1\}.$$
 we have two cases

Case(i). When $2n \equiv 0 \pmod{4}$. We consider three subcases

Subcase 1.1 When
$$n \equiv 0 \pmod{6}$$
 For $i = 1, 2, \dots, \lfloor \frac{n}{6} \rfloor$

 ${}_{\rm Let}H_i=< u_{6i-5}, u_{6i-4}, \ u_{6i-3}, \ u_{6i-2}, \ u_{6i-1}, u_{6i}$

 $\begin{array}{l} v_{6i-5}, \ v_{6i-4}, \ v_{6i-3}, \ v_{6i-2}, \ , \ v_{6i-1}, \ v_{6i} > \mbox{be the vertex induced subgraph of SL_{2n}. Then for each i, assign colors $4i-3$, $4i-2$, $4i-1$ and $4i$ to the vertices $\{u_{6i-5}, v_{6i-5}, v_{6i-3}\}$, $\{u_{6i-4}, v_{6i-4}, v_{6i-2}\}$, $\{u_{6i-3}, u_{6i-1}, v_{6i-1}\}$ and $\{u_{6i-2}, u_{6i}, v_{6i}\}$ respectively. We obtain a γ_{χ^-} coloring of SL_{2n}. So $\gamma_{\chi}(SL_{2n}) = \left[\frac{2(n-3)}{3}\right] + 2$. } \end{array}$

Subcase 1.2 When $n \equiv 2 \pmod{6}$ Since $n - 2 \equiv 0 \pmod{6}$, as the same coloring of $SL_{2(n-2)}$ in Subcase 1.1, together with we assign two new colors say $\left[\frac{2(n-3)}{3}\right] + 1$ and $\left[\frac{2(n-3)}{3}\right] + 2$ to the vertices $\{u_{n-1}, v_{n-1}\}$ and $\{u_n, v_n\}$ respectively. We obtain γ_{χ} - coloring of SL_{2n} . So $\gamma_{\chi}(SL_{2n}) = \left[\frac{2(n-3)}{3}\right] + 2$.

Subcase 1.3 When $n \equiv 4 \pmod{6}$ Since $n - 4 \equiv 0 \pmod{6}$, by Subcase 1.1, $\gamma_{\chi}(SL_{2n})$ is obtained by $\gamma_{\chi}(SL_{2(n-4)})$ in addition with 4 new colors say, $2\left\lceil \frac{(n-3)}{3} \right\rceil + 1$ and $2\left\lceil \frac{(n-3)}{3} \right\rceil + 2$ to the vertices $\{u_{n-1}, v_{n-1}\}$ and $\{u_n, v_n\}$ respectively, to get a required γ_{χ} -coloring. Thus $\gamma_{\chi}(SL_{2n})=2\left\lceil \frac{(n-3)}{3} \right\rceil + 2$

Figure 2.3 $\gamma_{\chi}(SL_{10})=8$

Subcase 2.2 When $n \equiv 3 \pmod{6}$

By using Subcase 1.1, we obtain the coloring of $SL_{2(n-3)}$. Also we distribute three distinct colors say $\left[\frac{2(n-1)}{3}\right] - 1$, $\left[\frac{2(n-1)}{3}\right]$ and $\left[\frac{2(n-1)}{3}\right] + 1$ to the vertices $\{u_{n-2}, u_n\}$, $\{u_{n-1}, v_{n-1}\}$ and $\{v_{n-2}, v_n\}$ respectively, to admit the γ_{χ} -coloring of SL_{2n} . So $\gamma_{\chi}(SL_{2n}) = \left[\frac{2(n-1)}{3}\right] + 1$

REFERENCES

- A.Vijayalekshmi, Total Dominator Colorings in Graphs, International Journal of Advancements in Research & Technology, 1(4) (2012), 1-10
- A.Vijayalekshmi, A.E Prabha ;Introduction of color class dominating sets in Graphs, Malaya Journal of Matematik, Vol.8, No.4, 2186-[2] 2189, 2020.

Figure 2.6 $\gamma_{\chi}(SL_{11}) = 8$

- [3]
- F.Harrary, Graph theory, Addition –Wesley Reading Mass, 1969 Terasa W.Haynes, Stephen T.Hedetniemi, Peter Slater, Domination in graphs, Marcel Dekker, New York, 1998. [4]