Color Class Dominating sets in Open Ladder and Slanting Ladder Graphs

Niju.P*, A.Vijayalekshmi**
** Associate Professor of Mathematics, S.T.Hindu College, Nagercoil-629002
Tamilnadu,India,Email:vijimath.a@gmail.com
*Research Scholar, Reg.No.11922, Department of Mathematics, S.T.Hindu College, Nagercoil-629 002, Tamilnadu, India. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012)

Abstract

Let $G=(V, E)$ be a graph. A color class dominating set of G is a proper coloring \mathcal{C} of G with the extra property that every color class in \mathcal{C} is dominated by a vertex in G. A color class dominating set is said to be a minimal color class dominating set if no proper subset of \mathcal{C} is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by $\gamma_{X}(G)$. Here we obtain $\gamma_{X}(G)$ for Open ladder graph and slanting ladder graph.

Key words: Chromatic number, Domination number, Color class dominating set, Color class domination number. Mathematics Subject Classification: 05C15, 05C69

I. INTRODUCTION

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as found in $\lceil 3\rceil$.

Let $G=(V, E)$ be a graph of order p. The open neighborhood $N(\nu)$ of a vertex $\nu \in V(G)$ consists of the set of all vertices adjacent to v. The closed neighborhood of v is $N[\nu]=N(v) \cup\{\nu\}$. For a set $S \subseteq V$, the open neighborhood $N(S)$ is defined to be $U_{v \in S} N(\nu)$ and the closed neighborhood of S is $N[S]=N(S) \cup S$. For any set H of vertices of G, the induced sub graph $\langle H\rangle$ is the maximal subgraph of G with vertex set H.

A subset S of V is called a dominating set if every vertex in $V-S$ is adjacent to some vertex in S. A dominating set is a minimal dominating set if no proper subset of S is a dominating set of G. The domination number $\gamma(G)$ is the minimum cardinality taken over all minimal dominating sets of G. A $\gamma-$ set is any minimal dominating set with cardinality γ. A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The smallest number of colors for which there exists a proper coloring of G is called chromatic number of G and is denoted by $\chi(G)$.
The join $G_{1}+G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex set V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph union $G_{1} \cup G_{2}$ together with each vertex in V_{1} is adjacent to every vertices in V_{2}. An Open ladder $O\left(L_{p}\right), p \geq 2$ from two paths ts of length $n-1_{\text {with }}$ $V(G)=\left\{u_{i} u_{i+1,} v_{i} v_{i+1} \quad / 1 \leq i \leq n\right\} \cup\left\{u_{i} v_{i} / 2 \leq i \leq n-1\right\}$. A Slanting ladder graph $S L_{n}$ is the graph obtained from two paths $u_{1} u_{2} \ldots \ldots \ldots u_{n}$ and $v_{1} v_{2} \ldots \ldots \ldots v_{n}$ by joining each u_{i} with ν_{i+1}. In this paper, we obtain $\gamma_{X}(G)$ for Open ladder graph and slanting ladder graph.

II. MAIN RESULTS

Definition 2.1. Let G be a graph. A color class dominating set of G is a proper coloring \mathcal{C} of G with the extra property that every color classes in \mathcal{C} is dominated by a vertex in G. A color class dominating set is said to be a minimal color class dominating set if no proper subset of \mathcal{C} is a color class dominating set of G. The color class domination number of G is the minimum cardinality taken over all minimal color class dominating sets of G and is denoted by $\gamma_{\chi}(G)$.
Theorem 2.2.For the Open ladder graph $\mathrm{O}\left(L_{p}\right) p \geq 2$,
$\gamma_{X}\left(\mathrm{O}\left(L_{p}\right)\right)=\gamma_{X}\left(\mathrm{O}\left(L_{2 n}\right)\right)= \begin{cases}\frac{2 n}{3} & \text { if } n \equiv 0(\bmod 3) \\ {\left.\left[\begin{array}{c}2(n-2) \\ 3\end{array}\right] \right\rvert\, 2} & \text { otherwise }\end{cases}$
Let $L_{p}=L_{2 n}=P_{2} \times P_{n}$ where $n \geq 2$
Let $V\left(O\left(L_{p}\right)\right)=\left\{u_{1}, u_{2}, \ldots \ldots . u_{n}, v_{1}, \ldots \ldots . v_{n}\right\}$ and
$E\left(O\left(L_{p}\right)\right)=\left\{u_{i}, u_{i+1}, v_{i} v_{i+1} \quad / i=1,2,3 . .(n-1)\right\} \cup\left\{u_{i} v_{i} / 2 \leq i \leq n-1\right\}$
We consider three cases
Case (i). When $n \equiv 0(\bmod 3)$
Decompose L_{p} into $\frac{p}{3}$ copies of L_{6}. Assign $\frac{p}{3}$ distinct colors say $2 i-1$ and $2 i\left(1 \leq i \leq \frac{p}{6}\right)$ $\left\{u_{3 i-2}, v_{3 i-1}, u_{3 i}\right\}$ and $\left\{v_{3 i-2}, u_{3 i-1}, v_{3 i}\right\}$ respectively, we get a $\gamma_{X}-$ coloring. So $\gamma_{X}\left(O\left(L_{p}\right)\right)=\frac{p}{3}=\frac{2 n}{3}$

Case $(i i)$.When $n \equiv 1(\bmod 3)$
Since $n-1 \equiv 0(\bmod 3)$, as in $\operatorname{Case}(\mathrm{i}), \gamma_{\chi}^{d}\left(L_{2(n-1)}\right)=\frac{2(n-1)}{3}$. Assign two distinct colors say $\left(\frac{2(n-1)}{3}\right)+1$ and $\left(\frac{2(n-1)}{3}\right)+2$ to the vertices $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ respectively, we get the required coloring. Thus $\gamma_{\chi}\left(O\left(L_{p}\right)\right)=\left\lceil\frac{2(n-2)}{3}\right\rceil+2$.

Case(iii). When $n \equiv 2(\bmod 3)$.
Since $n-2 \equiv 0(\bmod 3)$, as in $\operatorname{case}(\mathrm{i}) \gamma_{X}^{d}\left(l_{2(n-2)}\right)=\frac{2(n-2)}{3}$. Assign two distinct colors say
$\left(\frac{2(n-2)}{3}\right)+1$ and $\left(\frac{2(n-2)}{3}\right)+2$. So the vertices $\left\{u_{n-1}, v_{n}\right\}$ and $\left\{u_{n}, v_{n-1}\right\}$ respectively, we attain the γ_{χ} - coloring of L_{p}. Thus

Theorem 2.3. Let $S L_{p}=S L_{2 m}$ be a Slanting ladder graph. Then
$\gamma_{\chi}\left(S L_{p}\right)=\gamma_{\chi}\left(S L_{2 n}\right)= \begin{cases}{\left[\frac{2(n-3)}{3}\right]+2} & \text { if } 2 n \equiv 0(\bmod 4) \\ \left\lceil\frac{2(n-1)}{3}\right]+1 & \text { if } 2 n \equiv 2(\bmod 4)\end{cases}$
Proof. Let $S L_{p}=S L_{2 n}(n \geq 3)$ be a Slanting ladder graph with
$V\left(L_{2 n}\right)=\left\{u_{1}, u_{2}, u_{3} \ldots \ldots . u_{n}, v_{1}, v_{2} \ldots \ldots . v_{n}\right\}$ and
$E(G)=\left\{u_{i} u_{i+1} / i<n\right\} \cup\left\{v_{i} v_{i+1} / i<n\right\} \cup\left\{u_{i} v_{i+1} / 1 \leq i \leq n-1\right\}$. We have two cases
Case(i). When $2 n \equiv 0(\bmod 4)$. We consider three subcases
Subcase 1.1 When $n \equiv 0(\bmod 6)$ For $i=1,2, \ldots \ldots \ldots\left[\frac{n}{6}\right]$,
${ }_{\text {Let }} H_{i}=<u_{6 i-5}, u_{6 i-4}, u_{6 i-3}, u_{6 i-2}, u_{6 i-1}, u_{6 i}$
$v_{6 i-5}, v_{6 i-4}, v_{6 i-3}, v_{6 i-2}, \quad v_{6 i-1}, v_{6 i} \gg_{\text {be the vertex induced subgraph of }} S L_{2 n}$. Then for each i, assign colors $4 i-3,4 i-2,4 i-1$ and $4 i$ to the vertices $\left\{u_{6 i-5}, v_{6 i-5}, v_{6 i-3}\right\}$, $\left\{u_{6 i-4}, v_{6 i-4}, v_{6 i-2}\right\},\left\{u_{6 i-3}, u_{6 i-1}, v_{6 i-1}\right\}$ and $\left\{u_{6 i-2}, u_{6 i}, v_{6 i}\right\}$ respectively. We obtain a γ_{χ} - coloring of $S L_{2 n}$. So $\gamma_{\chi}\left(S L_{2 n}\right)=\left\lceil\frac{2(n-3)}{3}\right\rceil+2$.

Subcase 1.2 When $n \equiv 2(\bmod 6)$
Since $n-2 \equiv 0(\bmod 6)$, as the same coloring of $S L_{2(n-2)}$ in
Subcase 1.1, together with we assign two new colors say $\left\lceil\frac{2(n-3)}{3}\right\rceil+1 \quad$ and $\left\lceil\frac{2(n-3)}{3}\right\rceil+2 \quad$ to the vertices $\left\{u_{n-1}, v_{n-1}\right\}$ and $\left\{u_{n}, v_{n}\right\}$ respectively. We obtain $\gamma_{\chi^{-}}$coloring of $S L_{2 n}$. So $\gamma_{X}\left(S L_{2 n}\right)=\left\lceil\frac{2(n-3)}{3}\right\rceil+2$.

Figure $2.2 \gamma_{X}\left(S L_{14}\right)=10$
Subcase 1.3 When $n \equiv 4$ (mod6)
Since $n-4 \equiv 0(\bmod 6)$,by Subcase 1.1, $\gamma_{\chi}\left(S L_{2 n}\right)$ is obtained by $\gamma_{\chi}\left(S L_{2(n-4)}\right)$ in addition with 4 new colors say, $2\left\lceil\frac{(n-3)}{3}\right\rceil+1$ and $2\left\lceil\frac{(n-3)}{3}\right\rceil+2$ to the vertices $\left\{u_{n-1}, v_{n-1}\right\}$ and $\left\{u_{n}, v_{n}\right\}$ respectively, to get a required γ_{χ}-coloring. Thus $\gamma_{\chi}\left(S L_{2 n}\right)=2\left\lceil\frac{(n-3)}{3}\right\rceil+2$

Figure $2.3 \gamma_{X}\left(S L_{10}\right)=8$
Case(2). When $2 n \equiv 2(\bmod 4)$
We consider 3 subcases
Subcase 2.1 When $n \equiv 1$ (mod6)
Since $n-1 \equiv 0(\bmod 6)$ By Subcase $1.1 \gamma_{\chi}\left(S L_{2(n-1)}\right)$ together with a new color say $2\left\lceil\frac{(n-1)}{3}\right\rceil+1$ to the vertices $\left\{u_{n}, \nu_{n}\right\}$ to attain the $\gamma_{\chi^{-}}$coloring of $S L_{2 n}$. So $Y_{X}\left(S L_{2 n}\right)=\left[\frac{2(n-1)}{3}\right]+1$.

Figure $2.4 \gamma_{X}\left(S L_{13}\right)=9$
Subcase 2.2 When $n \equiv 3$ (mod6)
By using Subcase 1.1 , we obtain the coloring of $S L_{2(n-3)}$. Also we distribute three distinct colors say $\left\lceil\frac{2(n-1)}{3}\right\rceil-1,\left\lceil\frac{2(n-1)}{3}\right\rceil$ and $\left\lceil\frac{2(n-1)}{3}\right\rceil+1$ to the vertices $\left\{u_{n-2}, u_{n}\right\},\left\{u_{n-1}, v_{n-1}\right\}$ and $\left[v_{n-2}, v_{n}\right]$ respectively, to admit the γ_{X}-coloring of $S L_{2 n}$. So $\gamma_{X}\left(S L_{2 n}\right)=\left\lceil\frac{2(n-1)}{3}\right]+1$

Figure $2.5 \gamma_{\chi}\left(S L_{9}\right)=7$
Subcase 2.3 When $n \equiv 5($ mod 6$)$
Since $\boldsymbol{n}-5 \equiv 0$ (mod6), $S L_{n}$ is obtained by $S L_{n-5}$ followed by

Figure $2.6 \gamma_{X}\left(S L_{11}\right)=8$

REFERENCES

[1] A.Vijayalekshmi, Total Dominator Colorings in Graphs, International Journal of Advancements in Research \&Technology, 1(4) (2012), 1-10
[2] A.Vijayalekshmi, A.E Prabha ;Introduction of color class dominating sets in Graphs, Malaya Journal of Matematik, Vol.8, No.4, 21862189, 2020.
[3] F.Harrary, Graph theory, Addition -Wesley Reading Mass, 1969
[4] Terasa W.Haynes, Stephen T.Hedetniemi, Peter Slater, Domination in graphs, Marcel Dekker, New York, 1998.

