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Abstract - A nonlinear mathematical model to study the effect of transmission dynamics of COVID-19 virus in a 
population with variable size structure is proposed and analyzed. The model divides the total human population into five 
subclasses namely, susceptibles, self-protected susceptibles, infectives, quarantined infectives and recovered population 
including a class representing cumulative density of corona virus in the environmental reservoir. The model exhibits two 
equilibria namely, the disease-free and the endemic equilibrium.  Analysis of the model reveals that the global dynamics 
of the spread of the COVID-19 infectious disease is completely determined by the basic reproduction number R0. If R0 

 1 the endemic equilibrium is locally asymptotically stable and is globally asymptotically stable under certain conditions 
showing that the disease becomes endemic. It is found that the infective population can be decreased if the individuals 
from susceptible population lockdown themselves and do not come in direct contact with viral density deposited on 
surfaces/objects or airborne droplets accumulated in the environmental reservoir. However, if higher number of 
individuals from infective class is quarantined at home or hospital, the spread of the disease can further be slowed down. 
It is also found that the improving the diagnosis rate of COVID-19 is very beneficial to control the spread of COVID-19. 
Numerical analysis of the model is also performed to investigate the influence of certain key parameters on the spread of 
the disease and to support the analytical results. 

Keywords: COVID-19, lockdown, asymptomatic infectives, symptomatic infectives, Quarantine, stability 
analysis 

 

I. INTRODUCTION 

In the past two decades, many cases of common cold (flu) are due to different corona viruses.  These corona 
viruses have left their impact at large scale (mainly: SARS in 2002 and MERS- in 2012) in different part of the 
world. Corona virus disease 2019 (COVID-19) is an infectious disease raise up by severe rapid respiratory syndrome 
corona virus 2 (SARS-CoV-2). It has taken all over world in its grip just within three months. The situation is 
becoming worse in country like USA, Brazil, Italy, Spain, France, Germany, India etc. According to WHO, most of 
people who are infected with COVID-19 virus experience mild to moderate respiratory illness and recover without 
needing special treatment. Older people or who have underlying medical problems are more severe to develop the 
illness. Common symptoms of COVID-19 are dry cough, fever, tiredness, sore throat, aches, and shortness of breath. 
In general, many times it is possible to have infection without any symptoms. Also, in case of current pandemic 
COVID-19, according to New York times [31], some individuals who are infected with the corona virus can spread 
it even though they have no symptoms. People who are healthy or have mild symptoms should keep themselves in 
self-quarantine and contact COVID-19 information line for guidance on testing and referral. However, till now there 
is no any specific treatment available for COVID-19. Though some vaccine is available but no single vaccine is 
effective at all the strains as COVID-19 changing its strain in every country. So, it is predicted that the number of 
COVID-19 infections may still increase. Therefore, at present, the key question is how to prevent/control the spread 
of COVID-19. In case of COVID-19, social distancing has emerged as one of the most broadly adopted intervention 
strategies (e.g., self isolation, social distancing, quarantine  infected individuals, promoting social consensus on self-
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protection like wearing a face mask in the public area, washing hands regularly etc.) to reduce the infection 
risk/transmission rate and control the spread of COVID-19 through the reduction of social contacts. More 
importantly, at this stage of the outbreak, it is important to understand transmission dynamics of the COVID-19 and 
deployment of different control strategies such as self isolation of susceptible, quarantine of infected individuals. 

Lockdown, self isolation and quarantine are the important measures by which further spread of the disease 
could be stop. Different governments are actively restricting the movement of people by imposing lockdown, which 
may be known as one of the largest quarantine in history. Except lockdown, different governments are also adopting 
various steps and imposing different types of intervention strategies, for instance, social distancing, washing hands 
for at least 20 seconds, wearing masks on public places, tracing close contacts.  

Mathematical models have a long history of application to help humans to understand how the dynamics of 
a disease spread in a population, for example in dengue [1,2,18], tuberculosis[23, 26], HIV [3, 23, 24] and many 
more. These models[1-3,7,18,22-24,26] try to accommodate various essential factors in the spread of a disease, such 
as the presence of a disease vector, the phenomenon of relapse and reinfection, symptomatic and asymptomatic 
cases, analysis of the success of interventions with limited costs, and others. The transmission potential of a disease 
is often measured in terms of the basic reproduction numbers. Since COVID-19is recent pandemic and has rapidly 
spread in many countries across the world, few mathematical studies have been conducted[4-
6,8,9,12,14,15,17,25,26,28-30] to capture the transmission mechanism and the effect of preventive measure. In 
particular, Yang et al. [4] proposed a mathematical model for COVID-19 incorporating multiple transmission 
pathways, including both human-to-human and environment-to-human transmission routes. The authors employed a 
bilinear incidence rate based on the law of mass action and fitted the model with the data of Wuhan city of China 
and estimated the reproduction number. Ngonghala et al. [5] developed a mathematical model of COVID-19 
pandemic in US (particularly, in New York) for assessing the population-level impact of the mitigation strategies. 
The authors performed the rigorous analysis of the model and the impacts of non-pharmaceutical intervention 
strategies, social distancing, quarantine, contact-tracing, isolation, face mask, etc. Legesse et. Al [13]. found the 
optimal control strategies for the transmission risk of COVID-19 and shows that that comprehensive impacts of 
prevention, intensive medical care and surface disinfection strategies outperform in reducing the disease epidemic 
with optimum implementation cost. Garba et al. [28] proposed a compartmental model to analyze the dynamics of 
COVID-19 in South Africa. The model system in [28] was used to estimate the effect of mitigation strategies and 
various control. The results of this particular study was twofold: (i) the disease may die out if control measures are 
implemented early and for a sustainable period of time (ii) effectiveness of self-isolation reduces the number of 
cases.  

Several compartmental models of COVID-19 outbreak in India, have also been studied [12, 25, 29, 30]. 
Khajanchi et al. [25] proposed a compartmental model with quarantine for the transmission dynamics of COVID-
19and calibrated the mode lwith daily and cumulative cases for the four provinces of India. The authors have 
performed a detailed theoretical analysis in terms of the basic reproduction number and predicted the cumulative 
cases. Moreover, the study suggests that quarantine, unreported and reported individuals as well as intervention 
policies like social distancing, lockdown, and media effect can play an important role in controlling the transmission 
of COVID-19. Sarkar et al. [12] proposed a mathematical model that predicts the dynamics of COVID-19 in India 
along with its 17 provinces. Their findings revealed the fact that the contact rate between susceptible and infected 
individuals could be reduced by a strict isolation imposed for susceptible individuals. Moreover the numerical 
evaluations of the model system [12] suggested the complete elimination of COVID-19 via suitable combination of 
contact tracing and restrictive social distancing. Further the authors also indicated that the accurate course of 
epidemic largely depends on how and when precautionary measures, isolation, and quarantine are enforced. In this 
direction, Sardar et al. [30] also considered a mathematical model on to analyze the impact of social distancing and 
lockdown. The authors have done a detailed analysis and validated the model with the data of India and its five 
different states. In particular, Sarita et al. formulated a COVID-19 model to analyze the role of intervention 
strategies and lockdown and found that after removal of lockdown fully or partially  the endemic level would be 
high. 

The aim of this paper is to provide a qualitative study of the dynamics of COVID-19 vis-a-vis its impact on 
human population. A basic compartmental model, which subdivides a given population into a number of mutually 
exclusive sub-populations is designed and qualitatively analyzed. Our main contribution related with considering the 
class of Lock-down in model. This new class, as compiled to any compartmental model, implies a number of 
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analysis about absence of disease and endemic equilibrium point, which is also consider in this work. This paper is 
organized as follows. In section 2, we present our model and assumptions, and conduct a detailed mathematical 
analysis and the non-negativity and boundedness. Section 3 represents calculation of basic reproduction number ; 
Section 4 discusses the dynamics of the model system including local and global stability of disease-free and 
endemic equilibrium; Section 5 presents sensitivity analysis; Section 6 demonstrates numerical simulation and 
discussion; and Section 7 concludes the paper. 

II. MATHEMATICAL MODEL 

Consider a population of size N(t) at time t with constant immigration of susceptibles at a rate . The 
population size N(t) is divided into five subclasses of Susceptibles X(t), population in Lockdown situation L(t),  
Symptomatic infectives Is(t),  Asymptomatic infectives Ia(t) and Q(t) Quarantine class . Population L(t) are the 
people who living in the area where the lockdown is applied. Symptomatic infectives Is(t) are the infectives who are 
infectious with strong infectivity and shows the symptom of corona virus infection. Asymptomatic infectives Ia(t)  
are infected by corona virus but are asymptomatic it means the system of corona virus are not appear in them. 
Quarantine class Q(t) consists of individuals who are infected and diagnosed but have been quarantined. They are 
isolated and do not contribute to infection spread with natural mortality rate d in all the classes human population 
and a separate class V(t) of cumulative density of corona virus in environmental reservoir. Susceptibles become 
infected via proper contact with symptomatic infective, asymptomatic infective and with the virus in the 
environmental reservoir by the contact rate β1, β2 and β3 respectively. l is the rate of transfer of susceptible to the 
lockdown class. η is the fraction of new infectives who will join the symptomatic infectives and the remaining 
portion 1-η of new infectives will join the asymptomatic infective class. ϕ is the rate of movement of symptomatic 
infectives who will join the quarantine class after being diagnosed. ψ is the rate of movement of asymptomatic 
infectives who will join the quarantine class after being  randomly diagnosed. Some asymptomatic infectives shows 
the symptoms after certain time hence μ is the rate of transfer of asymptomatic infectives to the symptomatic 
infectives.   

 
It is further assumed that ξ is the rate of movement of quarantined people to the susceptible class after 

being recoverd from COVID-19. Some of the asymptomatic infectives will recover without quarantine and again 
increase the susceptible population by the rate ρ. The constant α  denotes the disease- induced death rate of 
infectives with are without being in quarantined class. The growth of viral density V (t) in the environmental 
reservoir is assumed to be directly proportional to the asymptomatic and symptomatic infectives where γ is the rate 
of increase of V. The constant γ0 is the rate by which viral density declines due to control/ preventive measures like 
mass sanitization in the environment.  
With the above assumptions and considerations, the dynamics of the disease is assumed to be governed by the 
following system of nonlinear ordinary differential equations,  
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2. 1 Non-negativity and boundedness of solutions 

  It is important to show that all the population variables are nonnegative for all t 0, which implies that any 
trajectory which starts with positive initial condition will remain positive for t 0. It is an important feature of an 
epidemiological model.  From equation (2.1), we have 

                                            

)(
)(

tdS
dt

tdS
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Integrating the above inequality and using initial condition, we obtain 

                                           

0)0()(  dteStS

 

Thus S(t )>0. Similarly, one can show that all the variables are non-negative for all t >0.  

III. COMPUTATION OF BASIC REPRODUCTION NUMBER 

          The transmission potential of a disease is often measured in terms of the basic reproduction numbers. The 
basic reproduction number (R0) is described as the expected number of secondary infections appearing from a single 
infectious individual throughout his/her whole infectious period, in the entire susceptible population [10, 11]. In the 
study of epidemiology, the fundamental concept of reproduction number (R0) is one of the most valuable ideas that 
the mathematical thinking has conveyed to epidemic theory [11]. In an epidemic disease, it could be determined that 
which control measures (intervention strategies) would be most helpful for suppressing R0 below one and which 
may also provide important advice for public health initiatives. More importantly, the R0 is also called a controlled 
reproduction number when it depends on the control strategies, it is computed for mathematical models including 
control strategies [16]. We calculate R0 by closely following the approach in Van den Driessche and Watmough [20, 
21]. We first compute the new infectious matrix F and transfer matrix W [19], according to formula 
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To calculate F and W, we only consider equations (2.3), (2.4)  and (2.6), which correspond to the groups (Is, Ia, V) 
capable of transmitting the disease. The non-negative matrix F, corresponding to new infections in the population at 
disease-free equilibrium is, 
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The non-singular matrix W, corresponding to the transfer of individuals into and out of compartment is, 
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W-1 is given by     



























000

1

1)(

0
1

0

0
1









ab

a

a

b

aba

W                                                                                                          (3.4) 

Where, 
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FW-1 is the next generation matrix of the system (2.1)-(2.6). It follows that the spectral radius of matrix FW-1 is  
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According to van den Driessche  and watmough [13,14], the basic reproduction number(on putting value of a, b) of 
the system (2.1)-(2.6) is 
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From the above expression of R0 we can see that as the lock down rate of susceptible increases reproduction rate 
decreases if l will be sufficiently large, reproduction rate will less then one. Also with the increase of quarantine rate 
ϕ and ψ of symptomatic and asymptomatic infectives respectively, reproduction rate decreases as ϕ and ψ are only in 
the denominator.  

If R0<1, then on average an infected individual produces less than one infected individual over the course of its 
infectious period and infection cannot grow. Conversely, if R0 >1 then on average an infected individual produces 
more than one new infection and the disease can invade the population.  

 

IV. EQUILIBRIA AND STABILITY ANALYSIS OF THE MODEL 

 4.1 Equilibria of the model 

The model (2.1)-(2.6) has two non-negative equilibria namely,  

(i)   













0,0,0,

)(
,

)(

)(
0 dld

l

dld

d
E




 the disease-free equilibrium, which exists without any condition.  
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*,Q*,V*), the endemic equilibrium.  The equilibrium values of different variables are given as,  
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4.2  Local stability of the equilibria 

To determine the local stability of E0, the following variational matrix of the system (2.1) – (2.6) is computed about 
E0 as,  
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Thus, from equation (3.5) it is noted that 03 a  . 
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are all positive.Using the Routh- Hurwitz stability criteria, it can be shown that the 

eigen values of matrix J(E0) have negative real parts. If R0 >1, then 03 a  thus
 
J(E0) has at least one eigen value 

with positive real part. Hence, disease free equilibrium E0 of the (2.1)-(2.6) is locally asymptotically stable if R0<1. 
Therefore, the disease dies out i.e. infection does not persist in the population and under this condition the 
equilibrium E* does not exist. It is unstable for R0 >1 and then E* exists and the disease always persists in the 
population.   Now the variational matrix corresponding to E* is given by, 
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Therefore, bi > 0 for i=1,2,3,4,5,6. Thus by Routh-Hurwith criteria, E* is locally asymptotically stable as if the 
remaining conditions  
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are satisfied.

 
 4.3. Global Stability of the endemic Equilibrium 
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To show the global stability [3, 9] behavior of E*, we need the bounds of dependent variables involved. For 
this, we find the region of attraction stated in the form of following lemma, stated below 

Lemma 1: The region           

    ;)(0;)(0;)()(0;)(0;)(0;,,,, VtVQtQItItILtLNtSVQIEN as              (4.3)      

is a region of attraction for the system (2.1)-(2.6). 
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Theorem 1. If the endemic equilibrium E* exists, then it is globally asymptotically stable provided the following 
sufficient conditions are satisfied in        
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Proof. Consider the following positive definite function about E*, 

                2*
5

2*
4

2*
3

2*
2

2*
1

2*

2

1

2

1

2

1

2

1

2

1

2

1
VVkQQkIIkIIkLLkSSP aass                                       

Differentiating P with respect to t, we get 
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Using equations (2.1)-(2.6) and simplifying, we get 
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Now for dP/dt to be negative definite, the following conditions must be satisfied,      

 



International Journal of New Innovations in Engineering and Technology                            

Volume 17 Issue 2 July 2021 89 ISSN: 2319-6319 

       

     
2

*
2

*
1

43

2*
2

*
2

*
2

*
1

)1(4

1

A

SS
DD

A

SS

A

SS






















 




                   

                                            

 

















 A

DDS

A

DDS
k

Ddl )1(3
,

3
min

)(4

15
2

54
*

2
2

53
*

1
4

5

2







    

                                               1
2

1 ))((4)(5 kddllk      

 Where VIIA as 321   ,  )(*
13 dSD   ,            

     )()1( *
24 dSD     ,    )(5 dD                      

 And     
A

S
k


 *

1
2   ,   

 
A

S
k

)1(

*
2

3 





            
 

5
0

2*
3

)(4

15
k

dl

S


 


                                                                      

Under these conditions, dP/dt will be negative definite showing that P is a Liapunov function with respect to E* 
whose domain contains Ω. 

 

V.  SENSITIVITY ANALYSIS 

Sensitivity indices allow us to measure the relative change in a variable when a parameter changes. The 
derivatives are the rate of change of predictions with respect to parameter. This work adopts the normalized forward 
sensitivity index to conduct the sensitivity analysis [15, 27, 29]. The normalized forward sensitivity index of a 
variable with respect to a parameter is the ratio of relative change in the parameter. When variable is differentiable 
function of the parameter, the sensitivity index may be alternatively defined using partial derivative. For instance, 
the normalized forward sensitivity index is   
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The parameter values displayed in below table  are taken as the baseline and they are used to evaluate the 
sensitivity indices of some parameters which are responsible for the transmission dynamics of COVID-19 infectious 
disease to four places of decimal in relation to the effective reproduction number R0, using equation (3.5) , the result 
of which is presented in table 1 below
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Table 1.  Sensitivity index and indices Table 

Parameter Symbol Sensitivity indices 
           1.75x10-7 

                            4.46x10-9 

       1.369861 

       -704188 
                             -502.3532 
                             -6.7x10-3 

                             1.369861 

0       -1.369861 

 

From table we can see that the positive indices i.e. , and  show that they have great impact on 
expanding the disease in the population if their valve increases R0 increases, it means the number of secondary 
infections increases in the population. Moreover, to make sure that R0 < 1, we need to decrease the values of the 
effective contact rates (β1, β2 and β3 ). Further the parameter l,  ,   and 0  for which the sensitivity indices is 

negative, shows that if these parameter will increase the basic reproduction number will decrease, which minimize 
the disease in the population. Thus as the rate of lockdown susceptible l increases  the disease decreases but it is not 
possible for long time so test rate of the infective people should increase so that after detecting COVID-19  positive 
more and more infective will quarantine soon and   and    increase which decrease the reproduction rate. It shows 

that the improving the diagnosis rate of COVID-19 is very beneficial to control the spread of COVID-19. As 0 , the 

rate of elimination of corona virus density, increases  R0 decreases. Thus proper sanitization is also very helpful to 
reduce the disease up to a level. 

VI. NUMERICAL SIMULATION AND DISCUSSION 

 To see the dynamical behavior of the model system, the system (2.1)-(2.6) is integrated numerically by 
fourth order Runge-Kutta method using the following set of parameters values:  
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 =  1,  d = 0.000038,  α = 0.001, 1  = 0.1,  2  = 0.3,    ,5.03    = 0.7,     l = 0.5 ,  ,003.0      
,3.0       = 0.21,      = 0.005 ,    = 0.01 , ψ = 0.005,   = 2x10-7 ,   0  = 10-13,  ,005.0  

with initial values S(0) = 155,  L(0) = 0, Is(0) = 0, Ia(0) = 0, Q(0) = 0 and V(0) = 1.  

The results of numerical simulation are displayed graphically in figs. (1 - 7). In fig. 1, the variation of asymptomatic 
infective population Ia(t) with time t is shown for different values of 2 , the rate of transmission of susceptibles to 

infective class through direct contact with asymptomatic infectives present in the population. It is seen that 
asymptomatic infective population increases with increase in the value of 2 . This implies that if a person not 

known about his infection due to no symptom will spread the disease more fast because he will go every where 
without taking any precaution. In figs. 2 the variation of symptomatic infective population Is(t) with time t is shown 
for different values of 1 , the rate of transmission of susceptibles to infective class through direct contact with 

symptomatic infectives present in the population. It is seen that symptomatic infective population increases with 
increase in the value of 1 . In figs. (3 - 4), the variation of asymptomatic infective population Ia(t) and symptomatic 

infective population Is(t) respectively is shown with time t for different values of l, the lockdown rate of the 
susceptibles. It is noted that with increase in the lockdown rate of susceptible, asymptomatic and symptomatic 
infective population decreases. This indicates that the individual should keep isolated himself as much as possible 
during the covid period and he should go out side the house only if there is very urgent work. Fig (4-7) the variation 
of asymptomatic infective ,  symptomatic infectives and quarantine population with time t for different value of  ,  

the rate of transfer of the symptomatic infectives to the quarantined class. It is found that as the value of   increase 

infective populations decrease and quarantine population increase. This indicates that if rate of transfer of infectives 
into quarantined class increases, the population in quarantined class who are either isolated at home or hospital 
increases. Since this increased population of quarantined individuals is isolated, it does not contribute to viral 
transmission further and hence, the spread of the disease can be lowered. It means as the testing rate of infectives 
should increase as much as possible so that a person can know about their infection at early stage and can quarantine  
at home or hospital.   
From the above discussion, it follows that if more and more susceptible individuals either lockdown themselves by 
following the COVID-19 guidelines or quarantined at home or hospital, the spread of the disease can be controlled. 
It is also observed that if the testing rate of COVID-19 will increase, more and more infectives will quarantine soon 
and will not take part in spreading the disease which helps the epidemic under control. 
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     Figure 1. Variation of  asymptomatic infective population for different value of  2  

 

Figure 2. Variation of  symptomatic infective population for different value of  1  
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Figure 3. Variation of  asymptomatic infective population for different value of  l 

 
Figure 4. Variation of  symptomatic infective population for different value of l   
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Figure 5. Variation of  asymptomatic infective population for different value of  


 

 
Figure 6. Variation of  symptomatic infective population for different value of  


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Figure 7. Variation of  quarantine  population for different value of  


 

 

VII. CONCLUSION 

In this paper, a nonlinear mathematical model has been proposed and analyzed to study the effect of self-protection 
and quarantine strategy on the spread of corona virus in a population with variable size structure. The analysis of the 
proposed model has been done using stability theory of differential equations and computer simulations. The model 
exhibits two equilibria namely, the disease-free and the endemic equilibrium. The local and global stability results of 
these equilibria have been established. It is found that if the individuals from susceptible population  lockdown 
themselves, the infective population can be decreased. This decrease is further affected if the individuals from 
infective populations will tested at early stage and quarantine themselves. Moreover, if higher numbers of 
individuals from infective classes are quarantined at home or hospital, the spread of the disease can be slowed down.  

Finally from the analysis, it may be concluded that lock down help to reduce the disease up to a level. The 
roll of asymptomatic infectives are very crucial in spreading the disease because they don’t show any symptoms and 
there screening rate is very low. Hence they can go any where and spread the disease easily. So random screening 
should increase in the public places. It is also found that if the virus density will decrease by sanitization, isolation or 
by other means the then  infectives does not reach the certain threshold, the epidemic can be kept under control. 
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