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Abstract-   Securing AES Accelerator from Key-Leaking Trojans on FPGA.Reconfigurable hardware presents a useful 
platform for building systems with high performance and secured nature. A new method for protecting 128-bit Advanced 
Encryption Standard (AES 128-bit) accelerator on Field Programmable Gate Array (FPGA) for embedded systems and 
cloud server is proposed. One of the major issues faced by the AES accelerator is the security of the key stored inside the 
FPGA memory. Security for the key inside the accelerator is provided through a masking scheme. To work with the 
masked key, a modified key expansion that maintains the throughput through a properly designed multistage pipelining 
is proposed. The proposed method takes the advantage of reconfigurable computing for flexible and efficient hardware 
implementation and provides security against key-leaking Trojans. The efficiency of the masked AES implementation is 
found to be 28.5 Mbps, which is 17.87% higher than the existing best wok. The security of the proposed masked scheme is 
validated through correlation and hamming distance calculation techniques. 
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I. INTRODUCTION 

 Advanced Encryption Standard (AES) is the widely using secure algorithm for encryption to provide privacy of data. 
Acceptance of cloud computing in every field causes increase in encryption load in cloud servers. To accelerate 
applications running on server and to reduce processor load, Field Programmable gate Arrays (FPGAs) are integrated 
with the server hardware. Computation-intensive applications can be shifted to FPGAs for increasing speed and 
reducing power consumption. FPGAs are reconfigurable hardware units that can be customized for required 
applications. Hence, high parallelism can be achieved with lower frequency. Cloud benefits from FPGA in several 
aspects. First, it could customize the FPGAs for computation-intensive application. Second, FPGAs could run with 
lower frequency and hence the heat production in server can be reduced to a large amount (Hauck & Andre, 2010; 
Kilts, 2007; Phan 2004; Teubner & Woods 2013). 

 Encryption is used in cloud for the privacy of data at rest and data in motion. That means disk encryption of 
user’s VM, transfer of user data in encrypted form, encrypted communication between different users, encryption as a 
service, and so on (Amazon Web Services, 2016; Bokefode, Bhise, Satarkar, & Modani 2016; Krutz & Vines, 2010; 
CLOUDLINK, 2014; Cloudsigma; Encryption at Rest in Google Cloud, 2016; HP Atalla Cloud Encryption, 2013; 
Protecting Data in Microsoft Azure, 2014; Rahmani, Sundararajan, Ali, & Zin, 2013). FPGA accelerator can be used 
to speed up the encryption process for large amount of data. Use of FPGA will increase encryption speed and reduce 
power consumption. To get finest performance, the design should have high speed and low area consumption. Figure 
1 shows the scenario in which FPGAs are used in cloud server as accelerators. The intellectual properties (IPs) can be 
collected from a hardware maker or from trusted third parties. When the processor assigns a job to an FPGA, the 
bitstream for hardware design can be loaded from bitstream storage if available or from outside cloud through 
external network. 

 

 

 
 
 
 
 

Figure 1. Usage of FPGA on cloud server 
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II. PROPOSED ALGORITHM 

2.1  . PROPOSED KEY-MASKING TECHNIQUE 

 
  To tackle the key-leaking attack on AES accelerator, key-masking technique that prevents the leaking of 
secure key from memory is proposed. The method masks the key and subkeys values whenever they are stored in 
the memory inside FPGA. Further, when the algorithm needs it for securing or retrieving data for legitimate user, the 
proposed modified key expansion will work on the masked key during encryption and decryption.In Figure 2, the 
proposed masking key concept is shown. As soon as the secret key is given, the first Add Round Key step is allowed 
to use the key. Afterwards, masking is applied to the key before storing in FPGA memory. For further Add Round 
Key steps, the modified Expansion Key will produce the exact round key for it. 
After a round key is produced, it is again masked in memory for producing next round key and this process 
continues.Masking is achieved by applying Substitute Byte operation on individual key blocks. The masked key can 
be securely stored and used in each AES round. The masking technique is shown in Equation (1). 
                                                  
                                                   
                                                  
                                                   (1)  
 
 
 

 
 

Figure 2. Proposed 128-bit Advanced Encryption algorithm with secure key masking 

2.2. Proposed Key Expansion 

AES Key Expansion takes 128-bit key, expands it to use in every Add Round Key step. It receives the key and 
divides it into four blocks—Kb0, Kb1, Kb2, and Kb3. Kb3 is taken, left circular shift by 1 bit, Substitute Byte is 
performed, XOR with constant Rcon (will be initially 01, then multiplied or divide by 02 at each round) and then 
XOR with Kb0 to get the new Kbnew0. Knew1, Kbnew2, and Kbnew3 are obtained by simply doing XOR Kb1, Kb2, 
and Kb3 with the previous output blocks (Lee et al., 2016). The process is shown in Figure 5(a). We propose a new 
Key Expansion technique that works on the masked stored key. The proposed Key Expansion works on the masked 
input key and gives the correct subkey to each Add Round Key in AES. The proposed technique provides security to 
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stored input key and subkeys. After the subkey for a particular round is generated, it is again masked and stored for 
next-round key generation. The proposed Key Expansion is shown in Figure 3.The Key Expansion is done by taking 
the masked key and splitting into four blocks— Kb0, Kb1, Kb2, and Kb3. Then Kb3 is taken, left circular shift, 
XOR with Rcon, and XOR with unmasked Kb0 are applied to get new Kbnew0. 

 
Figure.3.Key expansion 

Here, Substitute Byte is not performed as it is already in substituted (masked) way. Kbnew1, Kbnew2, and 
Kbnew3 are obtained by performing XOR of the previous output with unmasked Kb1, Kb2, and Kb3, as shown in 
Figure 10(b). It is given in Equation (2). 
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   (2) 

    

Equations (3)–(6) show that the proposed Key Expansion  
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The memory where a masked key is stored is partitioned to allow parallel data access. The latency of the proposed 
Key Expansion after memory partitioning is found to be 4 and the initiation interval was found to be 5 for 1.23 ns 
path delay, meaning it takes four clock cycles to perform Key Expansion and the unit can be reused in the fifth clock 
cycle. Accordingly,a five-stage pipelining could make the initiation nterval to 1. 

We are proposing a five-stage pipelining by dividing sub operations to fit into single clock cycle. Figure 4 shows 
the proposed five-stage pipelining for the proposed Key Expansion module.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure .4.Proposed five-stage pipelined design of key expansion 

III. IMPLEMENTATION AND RESULTS 

The proposed method is tested on an XC7VX690T device. Vivado Design Suite—HLx Edition was used for the 
implementation (Vivado Design Suite, 2014 2013, 2013). Resource optimization was done by code optimization and 
careful placement of resources.Throughput, T can be calculated as given (Farashahi et al., 2014; Oukili & Bri, 2017): 

Throughput and efficiency can be calculated from Equations (7)–(9). The number of bits processed by the system 
is 128 bits. Critical path delay for 813 MHz is 1.23 ns. The number of clock cycles that depend on throughput is 1 as 
at each clock cycle, the system could receive the input. So it does not depend on latency. Using the proposed scheme, 
a throughput of 104.06 Gbps was achieved. Table 3 gives the comparison of the proposed work and other related 
works. 

    The proposed system attained a throughput of 104.06 Gbps, which is same as that achieved by unmasked 
method reported in our previous work ( Chellam & Natarajan, 2017) through proper pipelining. The work has been 
compared with all related FPGA-based AES designs to the extent of author’s knowledge. Table 3 shows the 
comparisons based on selected parameters and matrices. Compared to the previous works, it is clear that the 
efficiency achieved by the proposed design outperforms that of all related works. The 2-slow retiming technique by 
Farashahi et al. (2014) achieved a throughput of 82.47 Gbps with a maximum clock frequency of 671.524 MHz. 
Fault-tolerant design by Kamali and Hessabi (2016) produced a throughput of 86.5 Gbps, but taking more resources. 
The study by Oukili and Bri (2017) reported a throughput of 93.73 Gbps for unmasked design and 58.57 Gbps for 
masked design. As their masking scheme was to avoid power analysis attack and masking was applied to all 
functions, the resource utilization was much more. 
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Using memory partitioning and single-initiation interval-based multistage function pipelining, our technique 
attains a throughput of 104.06 Gbps at 813 MHz. For unmasked design, our work achieved an efficiency of 39.7 
Mbps, which is higher than that achieved in all existing works. Our proposed masking scheme is aimed at avoiding 
key leakage through Trojans, and masking is applied only to key storage. 

Table 3. Comparison of performance between related works and proposed work 

 

IV.CONCLUSION 

 
The use of reconfigurable hardware for high performance and secure application in computation-intensive 
environment is very useful. Usage of masking scheme for keys in AES accelerator provides protection against key-
leaking Trojans, which is mandatory for security-critical applications. The modified Key Expansion technique was 
found to work properly with the masked key and gave same throughput with the proposed pipelining approach. The 
masked scheme could when pipelined, provides a throughput of 104.06 Gbps with an efficiency of 28.5 Mbps. 
The security analysis shows that there is no correlation between the masked key and the original key. 

 
 
 
 

 

 

 

 

Platform No. 
of 

Bits 

Freq
uency 
(MHz) 

Path 
Delay 

 (ns) 

Throughput 
(Gbps) 

Slices Throughput/
Slice(Mbps/sli
ce) 

 Good and Benaissa (2007) XC3S4000-5 128 240.9  - 30835Mbps) 20720 1.4 

XC2V8000-5 128 222.8  - 28526 (Mbps) 31674 0.901 

Hammad et al. (2010) XC2V6000 128 305.1  - 39053 (Mbps) 10662 3.663 

Liu et al. (2013) XC7VX690T 128 516.8 - 66.1 3436 19.2 

Zhang and Parhi (2004) XCV1000  128 168.4 - 21.56 11022 1.95 

Granado-Criado et al. (2010) XC2V6000-6 128 194.7 5.136 24.922 3576 6.9 

Liu et al. (2015) XC7VX690T 128 593 1.6 75.92 4339 17.5 

Farashahi  
etal. (2014) 

 

Soltani and  
Sharifian 
(2015) 

4-level pipe Virtex 5 128 433.06 - 55.432 3557 15.5 

6-level pipe Virtex 5 128 528.37 - 67.631 3557 19.0 

two-slow 
retiming 

Virtex 5 128 671.524 - 86 3557 24.1 

coml-SpeM Virtex 5 128 764.059 1.3 97.8 10760 9.08 

Roml-SpeM XC6VLX240T 128 764.059 1.3 97.8 10280 9.51 

Com-Mux XC6VLX240T 128 803.988 1.2 102.91 28520 3.6 

 Hussain and Jamal (2012) Virtex 7 128 456  - 5.3 2444 2.17 

Oukili 
and Bri 
(2017) 

Unmasked XC6VLX240T 128 732.279 1.3 93.73 5759 16.2 

Masked XC6VLX240T 128 457.582 2.1 58.57 9531 6.14 

Sharma et al. (2016) XC4VLX60-
12(FF668) 

128 476.19 - 59.52 3425 2.32 

Rahimunnisa et al. (2014) XC6VLX75T 128 505.5 - 37.1 1664 22.2 

Kamali and Hessabi (2016) XC7VX690T 128 675.62 - 86.5 4515 19.15 

Wang and Ha (2013) XC6VLX240T 128 319.29 - 40.9 9071 4.5 
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