
International Journal of New Innovations in Engineering and Technology

Volume 15 Issue 2 November 2020 10 ISSN: 2319-6319

Securing AES Accelerator from Key Leaking
Trojans on FPGA

Dr.Pydimarri Padmaja

Professor,ECE Dept.,Teegala Krishna Reddy engineering college ,Hyderabad, INDIA

 G shirisha
 Asst,Professor, ECE Dept.,Teegala Krishna Reddy engineering college ,Hyderabad, INDIA

Abstract- Securing AES Accelerator from Key-Leaking Trojans on FPGA.Reconfigurable hardware presents a useful
platform for building systems with high performance and secured nature. A new method for protecting 128-bit Advanced
Encryption Standard (AES 128-bit) accelerator on Field Programmable Gate Array (FPGA) for embedded systems and
cloud server is proposed. One of the major issues faced by the AES accelerator is the security of the key stored inside the
FPGA memory. Security for the key inside the accelerator is provided through a masking scheme. To work with the
masked key, a modified key expansion that maintains the throughput through a properly designed multistage pipelining
is proposed. The proposed method takes the advantage of reconfigurable computing for flexible and efficient hardware
implementation and provides security against key-leaking Trojans. The efficiency of the masked AES implementation is
found to be 28.5 Mbps, which is 17.87% higher than the existing best wok. The security of the proposed masked scheme is
validated through correlation and hamming distance calculation techniques.

Keywords – AES, Trojans, FPGA, Pipelining, Accelerator, Masking, Security, Encryption Key

I. INTRODUCTION

 Advanced Encryption Standard (AES) is the widely using secure algorithm for encryption to provide privacy of data.
Acceptance of cloud computing in every field causes increase in encryption load in cloud servers. To accelerate
applications running on server and to reduce processor load, Field Programmable gate Arrays (FPGAs) are integrated
with the server hardware. Computation-intensive applications can be shifted to FPGAs for increasing speed and
reducing power consumption. FPGAs are reconfigurable hardware units that can be customized for required
applications. Hence, high parallelism can be achieved with lower frequency. Cloud benefits from FPGA in several
aspects. First, it could customize the FPGAs for computation-intensive application. Second, FPGAs could run with
lower frequency and hence the heat production in server can be reduced to a large amount (Hauck & Andre, 2010;
Kilts, 2007; Phan 2004; Teubner & Woods 2013).

 Encryption is used in cloud for the privacy of data at rest and data in motion. That means disk encryption of
user’s VM, transfer of user data in encrypted form, encrypted communication between different users, encryption as a
service, and so on (Amazon Web Services, 2016; Bokefode, Bhise, Satarkar, & Modani 2016; Krutz & Vines, 2010;
CLOUDLINK, 2014; Cloudsigma; Encryption at Rest in Google Cloud, 2016; HP Atalla Cloud Encryption, 2013;
Protecting Data in Microsoft Azure, 2014; Rahmani, Sundararajan, Ali, & Zin, 2013). FPGA accelerator can be used
to speed up the encryption process for large amount of data. Use of FPGA will increase encryption speed and reduce
power consumption. To get finest performance, the design should have high speed and low area consumption. Figure
1 shows the scenario in which FPGAs are used in cloud server as accelerators. The intellectual properties (IPs) can be
collected from a hardware maker or from trusted third parties. When the processor assigns a job to an FPGA, the
bitstream for hardware design can be loaded from bitstream storage if available or from outside cloud through
external network.

Figure 1. Usage of FPGA on cloud server

International Journal of New Innovations in Engineering and Technology

Volume 15 Issue 2 November 2020 11 ISSN: 2319-6319

II. PROPOSED ALGORITHM

2.1 . PROPOSED KEY-MASKING TECHNIQUE

 To tackle the key-leaking attack on AES accelerator, key-masking technique that prevents the leaking of
secure key from memory is proposed. The method masks the key and subkeys values whenever they are stored in
the memory inside FPGA. Further, when the algorithm needs it for securing or retrieving data for legitimate user, the
proposed modified key expansion will work on the masked key during encryption and decryption.In Figure 2, the
proposed masking key concept is shown. As soon as the secret key is given, the first Add Round Key step is allowed
to use the key. Afterwards, masking is applied to the key before storing in FPGA memory. For further Add Round
Key steps, the modified Expansion Key will produce the exact round key for it.
After a round key is produced, it is again masked in memory for producing next round key and this process
continues.Masking is achieved by applying Substitute Byte operation on individual key blocks. The masked key can
be securely stored and used in each AES round. The masking technique is shown in Equation (1).

 (1)

Figure 2. Proposed 128-bit Advanced Encryption algorithm with secure key masking

2.2. Proposed Key Expansion

AES Key Expansion takes 128-bit key, expands it to use in every Add Round Key step. It receives the key and
divides it into four blocks—Kb0, Kb1, Kb2, and Kb3. Kb3 is taken, left circular shift by 1 bit, Substitute Byte is
performed, XOR with constant Rcon (will be initially 01, then multiplied or divide by 02 at each round) and then
XOR with Kb0 to get the new Kbnew0. Knew1, Kbnew2, and Kbnew3 are obtained by simply doing XOR Kb1, Kb2,
and Kb3 with the previous output blocks (Lee et al., 2016). The process is shown in Figure 5(a). We propose a new
Key Expansion technique that works on the masked stored key. The proposed Key Expansion works on the masked
input key and gives the correct subkey to each Add Round Key in AES. The proposed technique provides security to

International Journal of New Innovations in Engineering and Technology

Volume 15 Issue 2 November 2020 12 ISSN: 2319-6319

stored input key and subkeys. After the subkey for a particular round is generated, it is again masked and stored for
next-round key generation. The proposed Key Expansion is shown in Figure 3.The Key Expansion is done by taking
the masked key and splitting into four blocks— Kb0, Kb1, Kb2, and Kb3. Then Kb3 is taken, left circular shift,
XOR with Rcon, and XOR with unmasked Kb0 are applied to get new Kbnew0.

Figure.3.Key expansion

Here, Substitute Byte is not performed as it is already in substituted (masked) way. Kbnew1, Kbnew2, and
Kbnew3 are obtained by performing XOR of the previous output with unmasked Kb1, Kb2, and Kb3, as shown in
Figure 10(b). It is given in Equation (2).

]

 (2)

Equations (3)–(6) show that the proposed Key Expansion

 (3)

 (4)

 (5)

 (6)

International Journal of New Innovations in Engineering and Technology

Volume 15 Issue 2 November 2020 13 ISSN: 2319-6319

The memory where a masked key is stored is partitioned to allow parallel data access. The latency of the proposed
Key Expansion after memory partitioning is found to be 4 and the initiation interval was found to be 5 for 1.23 ns
path delay, meaning it takes four clock cycles to perform Key Expansion and the unit can be reused in the fifth clock
cycle. Accordingly,a five-stage pipelining could make the initiation nterval to 1.

We are proposing a five-stage pipelining by dividing sub operations to fit into single clock cycle. Figure 4 shows
the proposed five-stage pipelining for the proposed Key Expansion module.

Figure .4.Proposed five-stage pipelined design of key expansion

III. IMPLEMENTATION AND RESULTS

The proposed method is tested on an XC7VX690T device. Vivado Design Suite—HLx Edition was used for the
implementation (Vivado Design Suite, 2014 2013, 2013). Resource optimization was done by code optimization and
careful placement of resources.Throughput, T can be calculated as given (Farashahi et al., 2014; Oukili & Bri, 2017):

Throughput and efficiency can be calculated from Equations (7)–(9). The number of bits processed by the system
is 128 bits. Critical path delay for 813 MHz is 1.23 ns. The number of clock cycles that depend on throughput is 1 as
at each clock cycle, the system could receive the input. So it does not depend on latency. Using the proposed scheme,
a throughput of 104.06 Gbps was achieved. Table 3 gives the comparison of the proposed work and other related
works.

 The proposed system attained a throughput of 104.06 Gbps, which is same as that achieved by unmasked
method reported in our previous work (Chellam & Natarajan, 2017) through proper pipelining. The work has been
compared with all related FPGA-based AES designs to the extent of author’s knowledge. Table 3 shows the
comparisons based on selected parameters and matrices. Compared to the previous works, it is clear that the
efficiency achieved by the proposed design outperforms that of all related works. The 2-slow retiming technique by
Farashahi et al. (2014) achieved a throughput of 82.47 Gbps with a maximum clock frequency of 671.524 MHz.
Fault-tolerant design by Kamali and Hessabi (2016) produced a throughput of 86.5 Gbps, but taking more resources.
The study by Oukili and Bri (2017) reported a throughput of 93.73 Gbps for unmasked design and 58.57 Gbps for
masked design. As their masking scheme was to avoid power analysis attack and masking was applied to all
functions, the resource utilization was much more.

International Journal of New Innovations in Engineering and Technology

Volume 15 Issue 2 November 2020 14 ISSN: 2319-6319

Using memory partitioning and single-initiation interval-based multistage function pipelining, our technique
attains a throughput of 104.06 Gbps at 813 MHz. For unmasked design, our work achieved an efficiency of 39.7
Mbps, which is higher than that achieved in all existing works. Our proposed masking scheme is aimed at avoiding
key leakage through Trojans, and masking is applied only to key storage.

Table 3. Comparison of performance between related works and proposed work

IV.CONCLUSION

The use of reconfigurable hardware for high performance and secure application in computation-intensive
environment is very useful. Usage of masking scheme for keys in AES accelerator provides protection against key-
leaking Trojans, which is mandatory for security-critical applications. The modified Key Expansion technique was
found to work properly with the masked key and gave same throughput with the proposed pipelining approach. The
masked scheme could when pipelined, provides a throughput of 104.06 Gbps with an efficiency of 28.5 Mbps.
The security analysis shows that there is no correlation between the masked key and the original key.

Platform No.
of

Bits

Freq
uency
(MHz)

Path
Delay

 (ns)

Throughput
(Gbps)

Slices Throughput/
Slice(Mbps/sli
ce)

 Good and Benaissa (2007) XC3S4000-5 128 240.9 - 30835Mbps) 20720 1.4

XC2V8000-5 128 222.8 - 28526 (Mbps) 31674 0.901

Hammad et al. (2010) XC2V6000 128 305.1 - 39053 (Mbps) 10662 3.663

Liu et al. (2013) XC7VX690T 128 516.8 - 66.1 3436 19.2

Zhang and Parhi (2004) XCV1000 128 168.4 - 21.56 11022 1.95

Granado-Criado et al. (2010) XC2V6000-6 128 194.7 5.136 24.922 3576 6.9

Liu et al. (2015) XC7VX690T 128 593 1.6 75.92 4339 17.5

Farashahi
etal. (2014)

Soltani and
Sharifian
(2015)

4-level pipe Virtex 5 128 433.06 - 55.432 3557 15.5

6-level pipe Virtex 5 128 528.37 - 67.631 3557 19.0

two-slow
retiming

Virtex 5 128 671.524 - 86 3557 24.1

coml-SpeM Virtex 5 128 764.059 1.3 97.8 10760 9.08

Roml-SpeM XC6VLX240T 128 764.059 1.3 97.8 10280 9.51

Com-Mux XC6VLX240T 128 803.988 1.2 102.91 28520 3.6

 Hussain and Jamal (2012) Virtex 7 128 456 - 5.3 2444 2.17

Oukili
and Bri
(2017)

Unmasked XC6VLX240T 128 732.279 1.3 93.73 5759 16.2

Masked XC6VLX240T 128 457.582 2.1 58.57 9531 6.14

Sharma et al. (2016) XC4VLX60-
12(FF668)

128 476.19 - 59.52 3425 2.32

Rahimunnisa et al. (2014) XC6VLX75T 128 505.5 - 37.1 1664 22.2

Kamali and Hessabi (2016) XC7VX690T 128 675.62 - 86.5 4515 19.15

Wang and Ha (2013) XC6VLX240T 128 319.29 - 40.9 9071 4.5

International Journal of New Innovations in Engineering and Technology

Volume 15 Issue 2 November 2020 15 ISSN: 2319-6319

REFERENCES
[1] Bokefode, J. D., Bhise, A. S., Satarkar, P. A., & Modani, D. G. (2016). Developing a secure cloud storage system for storing IoT data by

applying role based encryption., Procedia Computer Science 89, 43–50.

[2] Bhasin, S., Danger, J. L., Guilley, S., Ngo, X. T., & Sauvage, L. (2013). Hardware Trojan horses in cryptographic IP cores. In
Workshop on Fault diagnosis and tolerance in cryptography (FDTC) (pp. 15–29). IEEE.

[3] Chellam, M. B., & Natarajan, R. (2017). AES hardware accelerator on FPGA with improved throughput and resource efficiency. Arabian
Journal for Science and Engineering, 1–18 Chellam, M. B., & Natarajan, R. (2017). AES hardware accelerator on FPGA with improved
throughput and resource efficiency. Arabian Journal for Science and Engineering, 1–18

[4] Chiţu, C., & Glesner, M. (2005). An FPGA implementation of the AES-Rijndael in OCB/ECB modes of operation. Microelectronics
Journal, 36(2), 139–146.

[5] Farashahi, R. R., Rashidi, B., & Sayedi, S. M. (2014). FPGA based fast and high-throughput 2-slow retiming 128-bit AES encryption
algorithm. Microelectronics Journal, 45(8), 1014–1025.

[6] Freeman, J., & Young, T. (2009). Correlation coefficient: Association between two continuous variables. Scope Tutorials,31–35.

[7] Good, T., & Benaissa, M. (2007). Pipelined AES on FPGA with support for feedback modes (in a multi-channel environment). IET
Information Security, 1(1), 1–10.

[8] Granado-Criado, J. M., Vega-Rodríguez, M. A., Sánchez-Pérez, J. M., & Gómez-Pulido, J. A. (2010). A new methodology to implement the
AES algorithm using partial and dynamic reconfiguration. Integration 43(1), 72–80.

[9] Hammad, I., El-Sankary, K., & El-Masry, E. (2010). High-speed AES encryptor with efficient merging techniques. IEEE Embedded
Systems Letters, 2(3), 67–71.

[10] [11] Hauck, S. & Andre, D. (2010). Reconfigurable computing: The theory and practice of FPGA-based computation (vol. 1) Morgan
Kaufmann.

[11] Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: A quantitative approach. Elsevier.

[12] Heron, S. (2009). Advanced Encryption Standard (AES). Network Security, 2009(12), 8–12.

[13] HP Atalla Cloud Encryption Securing Data in the Cloud (2013). Technical White Paper.

