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Abstract-   An investigation has been carried out to analysis an unsteady free convective chemically reacting, MHD Non-
Newtonian fluid (Walter’s liquid-B model) flow past an infinite vertical plate with uniform temperature and 
concentration in the presence of transverse magnetic field through porous medium. The dimensionless governing partial 
differential equations are solved using Laplace transform technique. They satisfy all imposed initial and boundary 
conditions and for S → 0 can be reduced to the similar solutions for Newtonian fluids. The solution of velocity, 
temperature and concentration as well as the rate of heat and mass transfer characteristics are analyzed by plotting 
graphs, the physical aspects are discussed in detail to interpret the effect of significant parameters like magnetic field, 
porous medium, thermal Grashof number, mass Grashof number, radiation parameter, Prandtl number, Schmidt 
number and first order chemical reaction of the problem.  
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I. INTRODUCTION 
The flow of an incompressible viscous fluid past impulsively started, infinite horizontal flat plate, in its own plane 
was first studied by Stokes [1]. Walters [2-3] formulated a system of constitutive equations for elasto-viscous fluid 
and of them is known as Walter’s liquid ‘B’. Kubair and Pei [4] studied theoretical analysis for the combined 
laminar free and forced convection heat transfer to non-Newtonian fluids in external flows. The impulsive motion of 
a flat plate in a viscoelastic fluid is studied by Teipel [5]. Bestman [6-7] studied laminar convection of a steady and 
unsteady radiating non-Newtonian fluid in a vertical porous channel.  Singh [8] presented MHD free-convection 
flow past an uniformly accelerated vertical porous plate. In this study he took into consideration of both cooling and 
heating cases.   Singh [9] studied the problem of MHD flow of an elastic-viscous fluid past an impulsively started 
vertical plate. Dandpath and Gupta [10] presented the flow and heat transfer in a visco-elastic fluid over a stretching 
shell.  Only few authors studied viscoelastic fluid flow by using Laplace transform technique namely Choubey and 
Yadav [11], Jha [12],  Samria [13], Chowdhury and Islam [14], Vijaya kumar et al. [15] and Kumaresan et al. [16]. 
Khan and Pop [17] studied unsteady free convective viscoelastic boundary layer flow past a vertical porous plate 
with internal heat generation/absorption was studied analytically. Hameed and Nadeem [18] investigated unsteady 
MHD flow of a non-Newtonian fluid on a porous plate. Damseh and Shannak [19] studied the viscoelastic fluid flow 
past an infinite vertical porous plate in the presence of first-order chemical reaction by using finite difference 
method. Numerical study of viscous dissipation effects on free convection heat and mass transfer of MHD non-
Newtonian fluid flow through a porous medium have been discussed by Eldabe et al. [20]. Motivated by the above 
cited work, in this paper, we present an analytical solution on MHD Non-Newtonian fluid (Walter’s B-Model) flow 
past an infinite vertical plate through porous medium with uniform temperature and concentration in the presence of 
transverse applied magnetic field. The dimensionless governing equations are solved using Laplace transform 
technique. The solutions are expressed in terms of exponential and complementary error functions. Exact solutions, 
on the other hand are needed not only for the technical relevance of the flows but are also significant for a variety of 
other reasons such as they can be used as a benchmark for numerical solvers and for checking the stability of their 
solutions.  
 

II. PROBLEM DISCRIPTION 
2.1 Mathematical Analysis 
The unsteady free convection and mass transfer flow of an electrically conducting incompressible visco-elastic fluid 
past an infinite vertical plate through porous medium in the presence of radiation and chemical reaction has been 
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considered. A transverse magnetic field of uniform strength 0B
 is applied normal to the direction of the flow. The 

induced magnetic field is neglected in comparison to the applied magnetic field as the magnetic Reynolds number of 

the flow is taken to be very small. The flow is assumed to be in x - direction which is taken along the vertical plate 

in upward direction against to the gravitational field and the y - axis is taken to be normal to the plate. Initially the 

plate and the surrounding fluid are at the same temperature T

 with concentration level C


 at all points in 

stationary condition. At time 0t  , the plate is given an impulsive motion with a uniform velocity 0U U
 in its 

own plane and the plate temperature raised to wT 
and at the same time concentration is also raised to wC

. For free 
convection flow, it is also assumed that 
The viscous dissipation is neglected in the energy equation. 

The effects of variation in density (  ) with temperature and species concentration are considered only on the body 
force term, in accordance with usual Boussinesq’s approximation. 
The fluid considered here is gray, absorbing / eliminating radiation but a non-scattering medium. 

The flow of the fluid is assumed to be in the direction of x axis, so the physical quantities are functions of the co-

ordinates y and t  only.  

 
Figure 1 Physical model and co-ordinate system 

 
By usual Boussinesq’s approximation, the unsteady viscoelastic fluid flow is governed by the following equations 
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With the initial boundary conditions   
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Where

2
0u

A
v


. The local radiant for the case of an optically thin gray gas is expressed 

by
 44rq

a T T
y
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    

  (5) 

It is assumed that the temperature differences within the flow are sufficiently small and that 
4T   may be expressed 

as a linear function of the temperature. This is obtained by expanding 
4T   in a Taylor series about T


and 

neglecting the higher order terms, thus, we get  
4 3 44 3T T T T 
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From equations (5) and (6), equation (2) reduces to  
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Equations (1) to (4), lead to 
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with the initial and boundary conditions: 
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All the physical parameters are defined in the nomenclature. For solving the problem, we take Beard and Walters [3] 

U in the form 0 1U U SU 
. The solution of equations (9) to (11) under initial and boundary conditions (9) and 

by the use of equation (12) and Laplace Transform Technique is thus given by: 
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2.2 The rate of heat transfer 
From temperature filed, now we study the rate of heat transfer which is given in non-dimensional form as: 
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The rate of mass transfer 
From concentration filed, now we study the rate of mass transfer which is given in non-dimensional form                                            
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From equations (14) and (18), we get 
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III. RESULTS AND DISCUSSION 

In Figures from (2) to (23) for the case of cooling 
 0, 0r mG G 

and heating
 0, 0r mG G 

 for 1M  , 

0.5S  ,
5mG 

,
10rG 

, 0.5K  , 5k  , Pr 0.1 , 0.78Sc  , 6R  , 0.4t  .Figures 1 and 2 reveal that 

the velocity variations with viscoelastic parameter in the cases of cooling and heating of the plate at time 0.4t  . It 
is observed that the velocity increases while increasing elasticity of the fluid, velocity up to the 

range 0 0.5y  then decreases in case of cooling of the plate.  The opposite reaction is found in the case of 

heating of the plate, finally takes asymptotic values at 2.5y   for both the cases. It may be concluded that the 
energy due to elastic property of the fluid increases the velocity and then gets dissipated. The influence of the 
thermal radiation parameter on the velocity profile is shown in Figures 3 and 4 for both cooling and heating cases 

respectively. Figure 3 shows that the radiation parameter tends to reduce the fluid velocity for  0, 0r mG G 
 

and the reverse effect will be found for  0, 0r mG G 
in figure 4. This is because those large values of R 

correspond to an increased dominance of conduction over absorption radiation, thereby increasing the buoyancy 

force and thickness of the momentum boundary layer. The effect of the magnetic field parameter M  is shown in 
Figures 5 and 6 in the case of cooling and as well as heating of the plate. It is observed that the velocity of the fluid 
decreases with the increase of the magnetic parameter values for cooling of the plate at time 0.4. As expected, the 
velocity decreases with an increase in the magnetic parameter. It is because the application of the transverse 
magnetic field will result in a resistive type force (Lorentz force) similar to the drag force which tends to resist the 
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fluid flow and thus reducing its velocity. Also, the boundary layer thickness decreases with an increase in the 
magnetic parameter. It is also seen that the velocity profiles decrease with the increase of the magnetic effect 
indicating that the magnetic field tends to retard the motion of the fluid. The magnetic field may control the flow 
characteristics. The reverse phenomenon is found in the case of heating of the plate. Figures 7 and 8 show the 
velocity profiles for different Prandtl numbers corresponding to different substances for cooling and heating of the 

plate:  Pr 0.025
mercury,  Pr 0 .05

 lithium and  Pr 0.1
. It is identified that the velocity decreases with 

the increase in the Prandtl number for cooling of the plate at time 0.4. It is evident from the figures that the thermal 

boundary-layer thickness is greater for fluids with small Prandtl number. The reason is that smaller values of Pr  are 
equivalent to an increasing thermal conductivity, and therefore such fluid heat is able to diffuse away from the 

heated surface more rapidly than for fluids with higher Pr  values. But the reverse effect is observed in the case of 
cooling of the plate. Figures 9 and 10 represent that the velocity profiles for different values of t (time) in cases of 
cooling and heating of the plate respectively. From these figures, in the case of cooling, the velocity is found to 
increasing with an increase in time t. But the reverse effect is observed in the case of heated plate.  The effect of the 
chemical reaction parameter (k) has shown in Figures 11 and 12 in the case cooling and heating of the plate. As 
expected, the presence of the chemical reaction significantly affects both profiles. It should be mentioned that the 
case studied relates to a destructive chemical reaction. In fact, as the chemical reaction parameter increases, a 
considerable reduction in the velocity occurs, and the presence of the peak indicates that the maximum velocity 
takes place in the fluid body close to the surface, but not at the surface itself. It is evident that an increase in this 
parameter significantly alters the concentration of boundary-layer thickness but does not change the momentum one. 
It is very clear from Figure 13 that an increase in porosity parameter leads to enhance the velocity profiles for 

cooling of the plate at time 0.4t  , because it reduces the drag force. But the reverse effect is observed from Figure 

14 in the case of heating of the plate. Figures 15 and 16 display the effects of Sc (Schmidt number) on the velocity 

field for the cases of cooling and heating of the plate at 0.4t  respectively. From these figures, in cooling case, it 

is found that the velocity increases with an increase in Sc  . But the reverse effect is found in heating case.  
The temperature of the flow field is mainly affected by the flow parameters, namely, radiation parameter and time.  
From Figures (17) and (18), it is observed when radiation parameter R increases, the temperature of the flow field 

decreases at all the points in flow region. Hence, it is observed that the temperature for conducting air  P r 0 .7 1  

is higher than that of water  P r 7 .0 this is because of the fact that thermal conductivity of the fluid decreases 

with increasing values of Pr resulting decrease in thermal boundary layer thickness. Therefore, using radiation we 
can control temperature distribution and flow transport. It is also seen that temperature increases as time increases, 
and it leads to zero as it moves away from the plate.  The effect of concentration profiles for different values of 
chemical reaction parameter, Schmidt number and time are illustrated in Figures (19) and (20) and it is found that 
the concentration decreases as chemical reaction parameter or Schmidt number increases while it increases with 
increasing values of time.  It is obviously seen that from Figure (21) the rate of heat transfer is measured in terms of 

Nusselt number found increasing to increase with an increase in R for both water at 200C  P r 7 .0  and 

conducting air  P r 0 .7 1 . It is also observed that the rate of heat transfer in water is more than in air, it is due to 

the fact that the smaller values of Pr are equivalent to increasing the thermal conductivities and therefore heat is 

able to diffuse more away from surface more rapidly than greater values of Pr , hence there is a reduction in heat 
transfer coefficient.  Finally, from Figure (22) it is noticed that Sherwood number increases as Schmidt parameter or 
chemical reaction parameter increases. 
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      Fig.1 Velocity profile for different values of S        Fig.2 Velocity profile for different values of S  

  
      Fig 3. Velocity profile for different values of R        Fig.4 Velocity profile for different values of R  

  

     Fig.5 Velocity profile for different values of M       Fig.6 Velocity profile for different values of M  
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     Fig.7 Velocity profile for different values of Pr       Fig.8 Velocity profile for different values of Pr  

  

     Fig.9 Velocity profile for different values of t       Fig.10 Velocity profile for different values of t  

 
 

    Fig.11 Velocity profile for different values of k      Fig.12 Velocity profile for different values of k  
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    Fig.13 Velocity profile for different values of K      Fig.14 Velocity profile for different values of K  

  

   Fig.15 Velocity profile for different values of Sc     Fig.16 Velocity profile for different values of Sc  

  

Fig.17 Temperature profile for & PrR          Fig.18 Temperature profile for t  
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     Fig.19 Concentration profile for &k Sc  Fig.20 Concentration profile for t  

 
 

Fig.21 Nusselt Number Fig.22 Sherwood  Number 
 
 

IV. CONCLUSION 
A theoretical investigation is performed on unsteady free convective chemically reacting, MHD visco-elastic fluid 
(Walter’s liquid-B model) flow past an infinite vertical plate with uniform temperature and concentration in the 
presence of transverse magnetic field through porous medium. Exact solutions are obtained by employing the 
Laplace transform technique and in response the following conclusions are made: 
The fluid velocity increases with increasing parameters viscoelastic, porosity, chemical reaction, Schmidt number 
and time for cooling of the plate, whereas its decreases in heating of the plate. 
The velocity of the fluid decreases with increasing Prandtl number, magnetic field parameter and      
 radiation parameter in case of cooling of the plate, whereas the reverse effect found in the case of  
 heating of the plate. 

The fluid temperature decreases with increasing values of R and Pr , but when time increases the  
 temperature is increase. 

The fluid concentration decreases with increase &k Sc , the reverse effect for increasing time. 
When radiation Prandtl number is increased the rate of heat transfer also increases and The Sherwood number is 

increasing with the increase &Sc k . 
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NOMECLATURE 

A  Constant 

y  Coordinate axis normal to the plate 

y  Dimensionless coordinate axis normal to the plate 
u  Dimensionless velocity 

u  Velocity of the fluid in the x - direction 

0u  
Velocity of the plate 

g  Acceleration due to gravity 

M  Magnetic field parameter 

0B  
External magnetic field 

rG  
Thermal Grashof number 

mG  
Mass Grashof number 

K   Dimensional permeability parameter 

K  Dimensionless permeability parameter 

0K
 

Dimensional Walter’s- B model parameter  

S  
Visco-elastic parameter 

T

 

Temperature of the fluid far away from the plate 

wT 
 

Temperature of the plate 
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T   
Temperature of the fluid near the plate 

  Thermal conductivity of the fluid 

  
Dimensionless temperature 

R  Radiation parameter 

Pr  Prandtl number 

C

 

Concentration in the fluid far away from the plate 

wC 
 

Concentration near of the plate 

C  
Dimensionless concentration 

C  
Species concentration in the fluid 

pC
 

Specific heat at constant pressure 

sC  
Concentration susceptibility 

mD  
Coefficient of mass diffusivity 

D  Chemical molecular diffusivity 

Sc  
Schmidt number 

rK  
Dimensional chemically reaction parameter 

k  
Dimensionless chemically reaction parameter 

t  Time 

t Dimensional time 
  Coefficient of viscosity 

erfc  
Complementary error function 

erf  
Error function 

  Density of the fluid 
  Electric conductivity 
v  Kinematic viscosity 
  Thermal diffusivity 

 
 

Volumetric coefficient of expansion with concentration 

  
Volumetric coefficient of thermal expansion 

W  
Conditions on the wall 

  Free stream conditions 
 
 


