
International Journal of New Innovations in Engineering and Technology 

Volume 14 Issue 2 July 2020 51 ISSN: 2319-6319 

Understanding Numerical Integration 
Techniques through examples from Electrical 

Engineering  

S. Muthukumar, Associate Professor,  

  Department of Electrical and Electronics  Engineering 
College of Engineering, Guindy(CEG),ANNA University, Chennai, TamilNadu, INDIA. 

 
Abstract- With a view of providing better comprehension of the concepts underlying 1st order and 4th order numerical 
integration techniques, complete programs are written down using MATLAB m-code, which can be easily translated to C 
or python programming languages, if required. Initially an LC circuit is considered, followed by a Permanent Magnet 
Synchronous Generator (PMSG) based renewable energy generation system. It is shown that by simple techniques the 
computational time, can be reduced without sacrificing the accuracy. Avoiding use of ready-made software toolboxes and 
dealing with programming, makes the student grasp the concepts involved leading to critical thinking. Correlating the 
mathematical concepts with the specific topics of engineering specialization through related examples, makes 
reinforcement in learning thereby kindling the thought process, leading to creativity. 
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I. INTRODUCTION 

In the curriculum of the many branches of engineering, the subject of numerical integration of simultaneous ordinary 
differential equations forms either separate core/ elective course or finds place as few units of a mathematics paper. 
This is usually taught by teachers from Mathematics department, who may have difficulty in illustrating with 
examples relevant to the branch of study. Most of the B.E. specializations do have a course on basics of electrical 
engineering, detailing electrical circuits and machines. In addition, B.E. Electrical Engineering students have 
courses on performance and analysis of electrical machines and Special Electrical machines at a later stage of their 
studies. In between they would also study a course on signals and/or control systems theory. Initially while studying 
the mathematics of numerical integration, it is not possible for them to understand dynamics of electrical machines 
supplying independent loads(Muthukumar et al,2005) or connected to grid(Ravikiran et.al,2007), as they have not 
yet learnt the principles of their operation. In the simulation experiments, they are introduced to ready-made 
software toolboxes – therefore, there is only limited scope for in-depth understanding of underlying concepts.  
 
To give the students better comprehension of solution of ordinary differential equations, ( A single nth order 
differential equation can be split into n simultaneous first order equations, which can be put in canonical form), 
which forms defining equation for the electrical circuit / system, here, an attempt is made to apply simple numerical 
integration techniques. With the view of making the students correlate what they study in these courses, initially an 
LC resonating tank circuit is considered and then a Permanent Magnet Synchronous Generator (PMSG) based 
wind/wave energy extracting renewable energy system is considered. The program is written in MATLAB as a M-
file instead of using toolboxes with built-in library components or demonstration examples available therein. This 
exercise makes the readers have better insight into the intricacies in the methods considered. The complete programs 
given, can be easily translated to other programming languages like C or python as needed. 
 

The rest of the paper is organized as follows. Initially the classical example of an LC resonating tank circuit is 
considered in section II. Its theoretical analysis and simulated results based on First order Euler method and 4th   order 
Runge-Kutta method are taken up. It is shown that by solving the defining equations of inductor and capacitor – one 
of them using forward difference algorithm and the other by backward difference algorithm, numerical stable results 
are obtained even with first order method, taking computationally lesser time. This idea becomes more important in 
solving for the dynamics of a PMSG driven by wind/wave turbine feeding a stand-alone load or feeding grid through 
a suitable grid- interactive power converting system.  Considering the non-linear characteristics of the turbines in 
addition to the intermittent nature of the available green energy, deriving maximum energy from such renewable 
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energy source all the time, requires an overall optimization problem to be solved with solution of the turbine-machine 
set dynamics many times solved in the inner loop. Therefore, reduction of the computation time of the inner loop 
becomes vital. The PMSG fed stand-alone load case is considered first with a step change in mechanical input in 
section III. The actual case of PMSG fed from renewable energy source is considered in section IV, along with 
inferences derived and result discussions. Finally, the last section – section V, concludes the discussion. . 

II. ANALYZING AN ELECTICAL CIRCUIT 

2.1 Theoretical analysis of an LC resonant tank circuit – 

Considering an LC resonant tank circuit as shown in fig.1a, which is a conservative system, with no external input 
and with only initial conditions on either capacitor voltage and/or inductor current, the dynamics are obtained by 
solving using First order Euler method. In the circuit, the two elements L and C are both in series and in parallel. They 
are in series connection as the current through  them are always equal. They are in parallel as the voltage across them 
are also always equal. This being a 2nd order system, as there are two energy storage elements, two state variables are 
to be identified. The inductor current and the capacitor voltage are the natural choice for the state variable assignment.  

The defining equation for the capacitor is the Coulumb’s law which states that Q = CV. Taking derivative on both 
sides, dQ/dt = C dV/dt. The current through the capacitor is dQ/dt. As the loop current assumed is in opposite 
direction so that it is same as the inductor current, i = -dQ/dt = -C dv/dt.. The defining equation for the inductor is the 
Faraday’s law which states that v = dψ/dt , where, ψ is the flux linkage. The inductance L of coil is defined as the 
flux linkage per unit ampere of current and assuming that the reluctance of the flux path does not change with the 
value of current, this becomes, v = L di/dt. Here the voltage v is not only across the inductor but also it is the capacitor 
voltage due to circuit connections. Incidentally, the defining equation for the capacitor is the Kirchoff’s Current Law 
(KCL) for the node formed by connecting the two components. Also, the defining equation for the inductor is the 
Kirchoff’s Voltage Law (KVL) for the loop formed by connecting the two components. 

It is found that the each of the state variable is proportional to the derivative of the other state variable. Therefore, a 
plot of one state variable against the other, also becomes phase portrait. Arranging the two equations in matrix form 
as, dX/dt = A X , where, X = {v,I, leads to a 2x2  ‘A’ matrix which has only off-diagonal elements. The roots of the 
characteristic equation are on the imaginary axis +/- j wr  , where the resonant frequency wr is 1/√ LC rad/sec.  

While teaching this in the circuit theory class, students may not have yet been introduced to control system basics, 
hence explaining in terms of poles of the transfer function, i.e, ‘poles on the imaginary axis leading to marginal 
stability’ may not be appealing to them. In some of the Universities, the syllabus of the subjects on the first year 
courses are such that these circuit theory concepts are to be learnt concurrently with Laplace transformation, or even 
before appreciating that ‘the Laplace transformation can used as a tool to convert differential equation into simple 
algebraic equation leading to easy solution of the time variations i(t) and v(t)’.  

Solution of this classical LC resonant tank circuit is well-known, and hence it is taken-up here for initial comparison 
of the numerical methods. The students can be made to understand this case by considering ‘auxiliary equation 
method’, which is taught at school level itself. They know well that solution to the first order differential equation 
dy/dt = y , is given by y = et. The Taylor’s series expression of the function ex about the origin 0 by a deviation x, is ‘1 
+ x/1! + x2/2! + x3/3! +.. + xn/n! +   + …..In this infinite series, the general nth term is : xn/n!, which when taken 
derivative with reference to x becomes the previous term. This type of easier explanation, rather than deriving based 
on limit of Δx tending to zero, make an impact on the learning behavior of the even average grasping type students. 
The solution to the second order differential equation d2y/dt2 = y , is also given by y = et, as the same concept can be 
applied repeatedly twice or even more times.   

This can be further extended to the case of solving dy/dt = kt, for which the solution is : y = ekt.. But if the given 
equation is second order differential equation d2y/dt2 = ky, (with k being a real and positive constant) , the solution is : 
y = e+√kt.. But, here the equation of the given circuit is of the form d2y/dt2 = -ky, (with k being a real and positive 
constant). This can be obtained by substituting the defining equation for the capacitor into the other equation of the 
inductor, in which case y here voltage ‘v’. Or, this can also be obtained by substituting the defining equation for the 
inductor into the other equation of the capacitor, in which case y here current ‘i’. This negative value ‘-k’, makes e+√-kt 

,  making the expression as sin(√kt) as per Euler’s expansion for the ‘e’ raised to a ‘complex’ exponent. All 
engineering students would have learnt this solution through ‘auxiliary equation method’ for the case of equal roots, 
in the school level mathematics itself, though this explanation would be new to them. 

Therefore, the solution to this LC resonating circuit is : v(t) = Vm sin(wrt+θv) and i(t) = Im sin(wrt+θi), where the 
values of amplitudes and phase angles do depend on the initial condition of this conservative system without any 
external inputs. For the case of having only initial condition on the capacitor voltage v(0) = V0, and no initial inductor 
current as this circuit is closed only at t=0, the solutions are : v(t) = V0 cos(wrt) and i(t) = Im sin(wrt), where the value 



International Journal of New Innovations in Engineering and Technology 

Volume 14 Issue 2 July 2020 53 ISSN: 2319-6319 

of peak current Im = V0 √(C/L).  As θv =  π/2, sin(wrt+θv) function is replaced with cos(wrt). And θi = 0. The 
expression for the peak current can be understood by applying ‘law of energy conversion’ to this lossless conservative 
system and equating the total energy at t=0, which is ‘ ½ CV0

2’ to the total energy  available only in the inductor after 
a quarter cycle of resonance, which is equal to ‘ ½ LIm

2’.This LC tank circuit is ideal circuit used for explaining the 
concepts and in practical cases there would power dissipation due to winding resistance of the inductor and due to 
non-ideal nature of capacitor quantified by its ‘tan δ‘ factor. Therefore, sustained oscillations in the current and 
voltage is not possible and they die down after few cycles, even if considering the case of ‘under-damped response’, 
i.e, R2<4L/C.The theoretical results for the ideal LC tank circuit is shown in fig.1.b. The values of the circuit 
components used and the initial conditions are also indicated therein. 

 

 
Figure 1.  a) LC resonant tank circuit and b) theoretically expected results. 

2.2  Solving by Numerical Integration by Euler 1st order method – 

The complete MATLAB program for solving the simultaneous first order differential equations pertaining to this LC 
resonating tank circuit is listed below.. 

% for quick generation of space for workspace variables: 
for ii = 1:1:2e4 
    curr(ii) = 0.0; volt(ii) = 0.0 ; 
end ; 
% initial values 
i_old=0; v_old=100; ind = 0.001 ; capa = 0.001 ;  
h = sqrt(ind*capa) * 0.005;  %time step for integration  
% iteration by Euler's 1st order method 
for ii=1:1:2e4 
    inew = i_old +  v_old/ind * h ; 
    vnew = v_old - i_old/capa * h  ;  
    curr(ii) = inew; 
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    volt(ii) = vnew; 
    i_old = inew; 
    v_old=vnew; 
end; 
subplot(2,2,1); plot(volt) ; 
xlabel('Time in seconds-->') ; 
ylabel('Capacitor voltage in V-->'); 
subplot(2,2,3); plot(curr) ; 
xlabel('Time in seconds-->') ; 
ylabel('inductor current in A-->'); 
subplot(2,2,2); 
plot(volt,curr) ; 
Title('results with Euler 1st order method') ; 
ylabel('inductor current in A') ; 
xlabel('Capacitor voltage in V'); 

 
The comment lines in the program make it self-explanatory. The results obtained are as given in fig.2 a) and b). The 
sinusoidal time-variations in both capacitor voltage and inductor current is noticed to be keeping on growing in 
amplitude. This is due to numerical instability of the forward difference algorithm followed by this Euler’s 1st order 
method. This is against law of energy conservation as the total energy in the conservative system, i.e ½ L{i(t)}2 + ½ 
C{v(t)}2  is constant, therefore phase portrait has to be a circle as x –axis is v(t) and y-axis id i(t) , both the peak values 
are equal in magnitude and so also the values of L and C. Therefore, the total energy = . ½ L{i(t)}2 + ½ C{v(t)}2  = 
constant. This is in form x2 + y2 = r2, which is the equation of a circle. The phase portrait based on theoretical results 
given in fig. 1.b) is given in fig.2d).  

 
Figure 2.  Results obtained by employing Euler’s 1st order method a) & b) voltage and current waveform (h=5X10-6); c) phase portrait showing 

growing sinusoidand instability of this forward difference method followed; d) Expected phase portrait based on waveform form fig.1.b 

The ideal LC circuit considered has poles on the imaginary axis at +/-jwr. But, the s -> z mapping obtained by forward 
difference algorithms , i.e, s replaced by the (z-1)/Ts, , map the imaginary axis s= 0+jw onto z= 1+jΩ , making all  
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marginally stable systems as unstable. If instead, backward difference algorithm is employed, the imaginary axis is 
mapped onto a circle of radius 0.5 with (0.5,0) as the center. This would make the marginally stable systems fully 
stable as all the points on the imaginary axis are mapped onto inside unit circle in the z-plane. The phase portrait 
obtained in that case is circle of shrinking radius, which is also wrong as it would be right for the case of RLC circuit 
with under-damped response. The simple first order methods lead to wrong results due to building -up of errors. This 
tin turn, is owing to taking only upto first order term in the Taylor’s series expansion. Instead, the popular forth order 
Runge-Kutta method leads to better results, as it basically takes into account upto fourth order terms in the Taylor’s 
series expansion around the point about which numerical integration is carried out. Next sub-section considers solving 
the same problem by this 4th order method. 

2.3  Solving by Numerical Integration byRunge-Kutta 4tth order method – 

The MATLAB program for solving these simultaneous differential equations, by employing Runge-Kutta fourth 
order method is obtained by replacing lines 10 & 11 of the above program with the following program segment: 

    k1 = [v_old/ind, -i_old/capa ] * h ; 

    k2 = [(v_old+k1(2)/2)/ind, -(i_old+k1(1)/2)/capa ] * h ; 

    k3 = [(v_old+k2(2)/2)/ind, -(i_old+k2(1)/2)/capa ] * h  ; 

    k4 = [(v_old+k3(2))/ind, -(i_old+k3(1))/capa ] * h  ; 

    inew = i_old +  (k1(1)+2*k2(1)+2*k3(1)+k4(1))/6; 

    vnew = v_old + (k1(2)+2*k2(2)+2*k3(2)+k4(2))/6; 

With this modification the same program is executed and run to find correct expected results and phase portrait of 
circle just similar to figure 2.d. But as more evaluations are involved per iteration of the loop, it takes more 
computation time.  

2.4  Computationally efficient algorithm for solving the same problem – 

In the MATLAB code employing Euler method with forward difference algorithm, by simple replacement of i_old by 
inew in line 11, correct results are obtained without increasing the computation time at all. This can be understood 
from the fact that one of the differential equation is solved by equivalent ‘forward difference equation’ and the other 
being solved by equivalent ‘backward difference equation’ leading to cancellation of positive and negative errors. In 
any computer platform and any MATLAB version, the computational time taken by the Euler’s method program with 
this change in the line 11, takes less than ‘one third’ of the time taken by the Runge-Kutta method based program. 

This concept of using just first order method for solving of simultaneous equation is again tried out with a machine-
load set in following section III. Computational time becomes more important here as this case has more involved 
dynamics owing to the acceleration/ deceleration of the inertia and mechanical time-constant concerned,  

The LC circuit analyzed here forms the basis of modern resonant inverters/ converters, where the switching losses are 
eliminated by employing LC components, thereby avoiding the need for loss making snubber circuits. The program 
given above can be easily extended for analyzing a resonant based series inverter. 

 

III. ANALYSIS OF PMSG FEEDING STAND ALONE LOAD  

Electricity is not available as it is anywhere except for ‘lightning’, nor it is used anywhere as it is, except possibly in 
the mosquito squatter bat (killing the insect by electric shock). Electrical form of energy forms only the intermittent 
link, transfer bulk energy from energy centres ( generated by power plants having alternators driven by turbines) to 
the load centres (industrial/ commercial or domestic consumers). For the renewable energy generation based on wind/ 
wave turbines, forming distributed generation system, previously induction generators were employed. Recently they 
are being replaced by the Permanent Magnet Synchronous Generators (PMSG) due to the disadvantage of Induction 
generators requiring reactive power support affecting voltage stability of the grid. Here, a PMSG feeding stand-alone 
load driven by an air-turbine is considered, with sudden step variation in the mechanical input power. Figure 3 a) 
shows the arrangement. The complete MATLAB program is listed below, alongside the defining equations of the 
PMSG and the characteristic equations for the air-turbine, are also provided for easy understanding of the program. 

 

% pmsg transient simulation by phase variable model The machine variable based transient model 
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h = 0.0001 ; tfin = 0.2 ; tstep1 = 0.075 ; tstep2 = 0.15 ; 

lss = 0.0012 ; lls = 0.0002 ; lm = ( lss - lls ) * 2/3 ; 

rs = 0.4 ; motorconst = 0.075 ; 

bm = 0.00002 ; inertia = 0.00007 ; pole = 4 ; 

one = ( 2 * lss - lm ) / (2 * lss * lss - lss * lm - lm * 
lm ) ; 

two = lm / (2 * lss * lss - lss * lm - lm * lm ) ; 

aa = rs * one ; bb = rs * two ; cc = - motorconst * one 
; dd = - motorconst * two ;  loadtorq = -1.5 ; rload = 10 ; 

ias = 0 ; ibs = 0 ; ics = 0 ; 

theta = 0 ; omega = 0 ;  ii =0 ; 

for tt = 0 : h : tfin      

    ii = ii + 1 ; 

    vas = -ias * rload ;     vbs = -ibs * rload ;    vcs = -
ics * rload ;     

    if ((tt >= tstep1) && (tt <= tstep2))  loadtorq = -1.0 
; else loadtorq = -1.50 ; end ;      

    diabydt = aa * ias + bb * ibs + bb * ics + cc * 
omega * cos (theta) + dd * omega * cos(theta-2*pi/3) + 
dd * omega * cos(theta- 4*pi/3) + one * vas +two * vbs 
+ two * vcs ; 

    dibbydt = bb * ias + aa * ibs + bb * ics + dd * 
omega * cos (theta) + cc * omega * cos(theta-2*pi/3) + 
dd * omega * cos(theta- 4*pi/3) + two * vas +one * vbs 
+ two * vcs ; 

    dwbydt =  pole * pole * motorconst / 4 / inertia * 
(ias * cos(theta) + ibs * cos(theta-2*pi/3) + ics * 
cos(theta+2*pi/3)) - bm * omega/ inertia - pole * 
loadtorq / 2 / inertia ; 

    dthetabydt = omega ;     

   ias = ias + diabydt * h ;   ibs = ibs + dibbydt * h ;    
ics = -ias -ibs ; 

    omega = omega + dwbydt * h ; 

    theta = theta + dthetabydt * h ; 

    if ( theta >= 2*pi)   theta = theta - 2 * pi ; end ;     

    aphcurr(ii) = ias ;  

    bphcurr(ii) = ibs ;  

    cphcurr(ii) = ics ;  

    speed(ii) = omega ; 

    position(ii) = theta ; 

    time(ii) = tt ;     

end ; 

 (Krause, P.C, et al., 2002) is employed for  

the PMSG: 
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where, La =  Lss  = stator self inductance per phase in H,  

Lb =   -Lm / 2 ,  (Lm= stator mutual inductance per phase in H, ) 

ψ  =  machine constant in V-sec/rad,   

w = speed in electrical rad/sec,  

θ = angular position of the rotor in electrical radians, 

va, vb, vc  – are the stator phase voltages,  and  

ia, ib, ic  – are the stator phase currents;  di/dt represented as i'. 

 

In the program, the turbine torque is considered to be constant  

With step changes at t= 0.075 second and 0.15 second.   

Actually, the behavior of an air-turbine employed in an OWC  

based plant, is given by, 

              ))ω(r+(V
a

kCa=dP txt
221

  

              ))ω(r+(VrkCt=T txtt
22   

Where, dP =Differential pressure in OWC chamber in N/m2,  

Tt = Gross torque produced by the impulse turbine in Nm.  

And, Vx = absolute axial velocity of the air flow in m/sec,  

wt = turbine speed in rad/sec.  

The other parameters are: area of air-flow,  

a = 0.402 m2, radius of blade tip, r = 0.425m, a 

nd the turbine constant kt = 0.2103 kg/m.   

Ca and Ct are input and torque co-efficients respectively,  

both defined as a function of the flow co-efficient φ,  

which is the ratio Vx / ( r * wt ).  
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The program employs the computationally efficient algorithm already established in previous section for the LC 
circuit. The results obtained with a step change in input power (which is the worst case) is considered. In the next 
section, the actual case of renewable energy fed air-turbine is considered, wherein  intermittent natured input power 
with wide fluctuations is to be handled, still extracting the best possible energy. On the load side, supplying constant 
power to the stand-alone load without frequency variations requires embedding energy storage devices into the 
scheme. In case of connecting to the grid, grid-interactive inverters would be employed. Recently, Voltage Source 
Converters (VSC) are employed so as to have better power quality. The Indian Wave energy plant employed stand-
alone load, typically a sea-water desalination plant supplying to the island. Hence the output of the PMSG is 
rectified into DC using a 3-Ф diode bridge. The water pumping does not demand making the power available to be 
consistently constant. 

 
Figure 3.  a) Turbine – machine set considered and b) Results obtained through numericalintegration. 

IV. FURTHER APPLICATION TO TURBINE ENERGY EHNHANCEMENT SCHEME 

The benefits of reduction in the computational time of the proposed technique without compromising the accuracy, is 
evident when this concept is applied to the case of Wave energy based renewable energy generation scheme. The 
Indian wave energy plant {based on Oscillating Water Column (OWC) concept} initially employed a Well’s turbine 
as the air-turbine. Later it was replaced by the Linked Guide-vane type Impulse Turbine. Applying Maximum Power 
Point Trajectory(MPPT) concept here, is more complex and involved compared to the case of solar PV based power 
generation, owing to dependence of efficiency on the flow co-efficient. The flow co-efficient is defined as the ratio of 
axial velocity of the air-flow to the linear velocity of the blade-tip. Both of these air-turbines have fluctuations in the 
running speed with the ocean wave entering the Caisson and retarding back, due to self-rectifying action. Instead of 
maintaining a constant electrical load on the output of PMSG, by continuously adjusting the per-phase equivalent 
resistance reflected on the electrical side of the PMSG, it is possible to make the air-turbine operate for more part of 
time-interval near maximum efficiency conditions.   

A maximum energy extraction scheme has been considered for the case of Linked Guide-vane based Impulse turbine 
case, and the results are readily available (Muthukumar S and Jayashankar V,2008). Though that Fixed Guide-vane 
based Impulse turbine exhibits lower efficiency (ηmax= 39.13% as tested with steady air-flow) when compared to 
Linked Guide-vane case (ηmax= 55.36% as tested with steady air-flow), the former type has advantage of giving 
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higher efficiencies over a wider range of flow co-efficient ( for the range of 0.6 to 2.2, the efficiency > 35%), apart 
from requiring lesser on-site maintenance. Hence, only Fixed Guide-vane type impulse turbine was employed in the 
wave energy based desalination plant.  

The maximum energy extraction scheme applied to the case of Fixed Guide-vane type impulse turbine, is not 
available in the literature and is carried out here, for the first-time and the results obtained are as given in fig. 4. 

 

Figure 4. Results of ‘Maximum energy extraction scheme’ applied to FGV type Impulse turbine, showing incresed turbine output power for the 
case of adjustable resisstance load.  

IV.CONCLUSION 

Compared to using ready-made software toolboxes or using ODE solvers from built-in library of the application 
software, writing program employing C like programming languages, enhances the student perceptions of intricate 
mathematical techniques. MATLAB m-code based programming was taken up here due to its easy print/plot 
features. A computationally efficient technique for numerical integration of simultaneous differential equations is 
arrived at considering classical LC resonant circuit and its supremacy is established by using it for solving an air-
turbine – machine set driven by renewable source and supplying to a stand alone load. A maximum energy 
extraction scheme has been applied to the case of Fixed Guide-vane type impulse turbine used in OWC based wave 
energy plant. 
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