
International Journal of New Innovations in Engineering and Technology

Volume 12 Issue 3 December 2019 065 ISSN: 2319-6319

Implementation of FFT Processor on FPGA

Shruti Ashok Joshi
1
, Nitesh Guinde

2

1
Department of Electronics and Telecommunication, Goa College of Engineering, Farmagudi-Goa

2
Associate Professor, Department of Electronics and Telecommunication,

Goa College of Engineering, Farmagudi-Goa

Abstract- Various processing applications such as video processing, audio processing, RF signal processing, image processing etc. include

computation of transforms such as FFT. Computation of FFT sample is expensive in terms of speed, performance and throughput. The

software N-point FFTs are reprogrammable but slow, which is a disadvantage. Two solutions are possible to alleviate the above problem.

One is to move the design to an ASIC, a complete hardware solution. Although, it improves the system performance, the ASIC is not

reprogrammable, or reconfigurable. The second is, design of FFT processor using hardware-software co-design on FPGA, which is

reconfigurable and has high throughput. This paper describes a hardware-software co-design of a FFT using a ZynqSoC. This SoC

tightly couples the programmable logic with a dual core Cortex ARM processor. It provides low latency, high throughput and cache

coherent communication between programmable logic and the ARM processor. Zedboard is one such platform, and is used in the

implementation of the project. This design could be inserted into any embedded application which has a FFT computation involved in it.

Keywords: Zynq-7000 SoC, Zedboard, IP core, Linux kernel device driver

I. INTRODUCTION

Discrete Fourier Transform (DFT) transforms a signal (or discrete sequence) from the time domain representation to

the frequency domain.DFT is used to calculate the frequency spectrum of a signal, for which it uses the information

encoded in frequency, phase and amplitude of the component sinusoids.DFT can also be used to find the frequency

response of a system from its impulse response. The direct evaluation of DFT for N samples requires N
2
 complex

multiplications and N (N-1) complex additions. Thus, for large values of N, inordinate amount of calculation will be

required. By using FFT algorithms, the number of calculations can be reduced. Fast Fourier Transform (FFT) is an

efficient algorithm for calculating the DFT.For N point DFT,only N/2 log2 N number of complex multiplications

are required using FFT.

Signal Processing modifies acquired time-series data for the purpose of analysis or enhancement. Examples of signal

processing include spectral analysis and enhancing acquired data using digital filtering. The algorithmsused for

signal processing use FFT to characterize the magnitude and phase of a signal. It is also used in combination with

other operations to perform more involved computations such as convolution or correlation.FFT computation is also

widely used in image or video processing applications. In image processing applications, FFT is used to convert an

image from image (spatial) domain to frequency domain. Applying filters to images in frequency domain is

computationally faster than to do the same in the image domain.

FFT algorithm needs to perform N/2 log2 N complex multiplications and N log2 N complex additions for N input

samples. If N>1024, then the number of computations required, also increase. This makes FFT computation, a

challenge.FFT algorithms can be implemented as a software code. But it is generally constrained to execute

instructions serially (one at a time) and is therefore severely constrained by the processor instruction throughput.

Thus, computation of FFT samples becomes slower. As an alternative to software FFT, hardware FFT can be

implemented. The hardware FFT performs many of its processing tasks in parallel, hence can achieve order-of-

magnitude throughput improvements over software FFTs executed in DSP microprocessors. But, the size and speed

of the logic designed must be kept at a practical scale.Also, as the number of computations increase, the power

consumption of the FFT increases. Since hardware FFT is a separate unit, a software-controlled coprocessor is

required for communication with the processor. Hardware software co-design of FFT on SoC, gives the advantages

obtained from software as well as hardware FFT. Such design is reconfigurable and has high throughput. Power

consumption of FFT implemented on SoC is also low.

Software defined radio is a radio communication system, in which the hardware components such as mixers, filters,

modulators/demodulators, detectors etc. are implemented using a software, on embedded system. Such a design

produces a radio which can communicate based on the software used.GNU Radio is a software development kit that

provides signal processing blocks to implement software radios.GNU Radio performs all the signal processing, and

can be used to write applications to transmit/receive data to/from digital streams, which is then transmitted using

hardware.GNU Radio has filters, channel codes, synchronization elements, equalizers, demodulators, vocoders,

decoders, and many other blocks, which are typically found in radio systems. It also includes a method of

connecting these blocks and then manages how data is passed from one block to another. Since GNU Radio is

software, it can only handle digital data.

International Journal of New Innovations in Engineering and Technology

Volume 12 Issue 3 December 2019 066 ISSN: 2319-6319

GNU Radio enables users to design, simulate and deploy real world radio systems, such as audio processing, mobile

communications, tracking satellites, radar systems, GSM networks, Digital Radio Mondiale etc. Almost all the radio

system applications mentioned, use FFT module for spectral analysis. This software development kit provides a

comprehensive library of processing blocks that can be combined to make complex signal processing applications.

II. RELATED WORK

The construction of the Cooley-Tukey Decimation-In-Time algorithm for implementation in an FPGA is described

in [2]. In this paper, the basic DFT algorithm is explained. The DIT (decimation in time) and DIF (decimation in

frequency) forms of FFT are also discussed further, and DIT FFT algorithm is preferred. For implementation of full

transform, an address generator, a butterfly operator, a memory and twiddle factor generator are required. The

construction of software transform is also explained in this paper further. The software transform is constructed by

first doing the permutation of the input data and then carrying out the butterfly operations. A comparison of

performing FFT in hardware and in software is carried out in [2] and s 32 point FFT in hardware using 11 bit signed

integer input data is implemented.

In [11], an adaptive FFT program that tunes the computation automatically for any particular hardware is proposed.

On general-purpose microprocessors, the performance of a program is mostly determined by complicated

interactions of the code with the processor pipeline, and by the structure of the memory. In this paper, this problem

is addressed by using an adaptive approach, where the program itself adapts the computation to the details of the

hardware. A FFTW, an adaptive, high performance implementation of the Cooley-Tukey fast Fourier transform

(FFT) algorithm written in C is developed in this paper. The runtime structure for FFTW is discussed in this paper.

The FFTW is compared with over 40 implementations of FFT on 7 machines. From this comparison, [11] infers that

the self optimizing approach of FFTW yields better performance than all other publicly available approaches.

[7] Provides an overview of the FIR filter FPGA accelerator example in GNU Radio with the ZynqSoC, and a

tutorial on how to setup the necessary hardware and software. This document provides the pre-built files such as

rootfs, SDK and boot files, required for building GNU Radio. Further, in this document, the procedure of building

Linux kernel, u-boot, and root file system with open embedded is also explained. A high level overview of the

components of FPGA accelerated FIR filter example, is discussed in detail. The procedure of preparing a bootable

card and configuring the hardware to boot from the SD card is also explained. This paper further explains the

procedure to install GNU Radio FPGA accelerated FIR filter module. Finally, a comparison of the performance of

the pre-existing software FIR filter and FPGA accelerated FIR filter is carried out.

Based on the information provided in the document [7], FPGA accelerated FIR filter example was tried on

Zedboard. Bitstream for the HDL design was generated successfully using the pre-built files. Also FSBL (First

Stage Boot loader), binary file of the design and a bootable SD card were also implemented. But installation of GNU

Radio FPGA accelerated FIR filter module could not be completed.

A study that focuses on the FPGA implementation of a reconfigurable FFT operator is discussed in [1].According to

the author of [1], the designed FFT operator can provide Fourier transforms over complex infinite field X and Galois

finite field GF. Also, it exploits the possibility to share hardware resources when considering multi-standard

scenarios for software radio systems. The technology proposed in this paper is connected to consumer handheld

devices in which FFT is involved.

Zedboard is a development board for Zynq-7000 all programmable SoC as mentioned in [14].The specifications of

this platform are discussed in [14].The Zynq-7000 SoC tightly couples a dual core Cortex A9 ARM processor with

the programmable logic[9].The other features of this SoC are also mentioned in [9].

Based on the study of FFT algorithm, Zedboard and the example in [7], the chosen aim of the project was,

implementation of FPGA accelerated FFT.All the important components of this project are discussed in the

following sections.

III. CONCEPTUAL DESIGN

Conceptually, the proposed design can be explained from figure (a).As shown in this figure, the design consists of

two parts:PS(processing system) and PL(programmable logic).The PS is an ARM processor, which is capable of

running various software applications. The PL is the hardware unit of the design. As can be seen in figure (a), PS

consists of only the Linux device driver running on ARM processor. Whereas, the PL consists of reconfigurable

HDL logic block and AXI bus interface block. These two blocks on PL communicate with each other through AXI4

peripheral buses. The PL and PS communicate with each other through the memory mapping function.

International Journal of New Innovations in Engineering and Technology

Volume 12 Issue 3 December 2019 067 ISSN: 2319-6319

Figure (a): Conceptual design

IV. RECONFIGURABLE HDL LOGIC BLOCK

As mentioned earlier, this paper presents a methodology to implement a computationally expensive unit in

hardware. Also for improving the performance of a signal processing application, FFT (Fast Fourier Transform) unit

must be implemented in hardware. The FFT unit is considered computationally expensive, because computation of

FFT samples is time consuming. It reduces the efficiency if entire application. To implement FFT unit as a

reconfigurable block, certain aspects need to be considered. According to the conceptual design, shown in figure (a),

the reconfigurable logic block must communicate with the AXI peripheral bus. But, for this communication, the

operating speed of both, the FFT and the AXI peripheral bus should be synchronized. Otherwise, some of the input

or output FFT samples could be lost. Thus, the design shown in figure (b) must be implemented. As shown in this

figure, the FFT unit is connected to 2 FIFO units, one at the input and the other at the output of the FFT unit. These

FIFO units retain the input or output samples. The control and data signals from AXI peripheral bus is stored in

fifo_0.It generate output signals, which are FFT input control and data signals. The FFT output signals are saved in

fifo_1, which supplies its output signals as control and data signals to AXI peripheral bus. The design in figure (b) is

implemented in Verilog, as a reconfigurable logic block.

Figure (b): Reconfigurable HDL logic block

International Journal of New Innovations in Engineering and Technology

Volume 12 Issue 3 December 2019 068 ISSN: 2319-6319

V. AXI PERIPHERAL BUS

Xilinx’s AXI peripheral bus is a part of ARM AMBA bus. There are 3 types of AXI4 interfaces as mentioned below.

(i) AXI4 Full: It provides high performance and has memory mapped requirements.

(ii) AXI4 Lite: It allows simple, low throughput memory mapped communication.

(iii) AXI4 Stream: It allows high speed streaming data.

The proposed design uses AXI4-Lite peripheral bus. This bus consists of lesser connections than that for full and full

or stream buses. Also, Lite bus supports the data transfer required in this design. It has got a simplified link, and

supports memory mapped data transfer. Thus, single address and word data transfer is possible. It consists of 32 bit

data bus width, 64 bytes memory, and 4 registers. It also consists of 5 channels, namely, read and write address

channels, read and write data channels, and a write response channel. But, this bus allows burst transaction of up to

256 data transfers only.

VI. BOOTABLE SD CARD

The PL is a HDL design. It needs to be ported to FPGA, which is Zedboard, in this case. A system design that is

compatible with Zedboard and FMCOMMS2 combination, is shown in figure (c).This design consists of ADCs,

DACs, AXI interconnect, Zynq PS, etc; and can be generated easily. The design that consists of 2 FIFOs and a FFT

unit, connected to AXI peripheral bus, constitutes the fft_with_fifo IP core. This core is integrated with the design

shown in figure (c). For implementing a computationally expensive unit in hardware, the design shown in figure (c),

along with the fft_with_fifo IP core, must be synthesized, implemented and the bitstream should be generated.

Programming the Zedboard with a bitstream, can be done in 3 different ways, which compared in table I. The JTAG

method of programming is the simplest among all. In this, bitstream is directly ported to the FPGA through JTAG

port. In Quad SPI method, the bitstream is ported to flash memory. In SD card programming method, FSBL (First

Stage Boot loader), uboot.elf (Second stage boot loader), and HDF (Hardware Description File) are required. In the

previous two methods, these two files are not needed. To implement the proposed design, the SD card programming

method is suitable. For this, the above mentioned files must be generated and further used, to create a binary

file,’BOOT.BIN’.This binary file is loaded on a SD card, compatible with the Zedboard and consists of Linux image

of suitable version.

Table 1 Comparison Of Programming Methods

Figure (c): System design

International Journal of New Innovations in Engineering and Technology

Volume 12 Issue 3 December 2019 069 ISSN: 2319-6319

VII. LINUX DEVICE DRIVER

The Linux device driver is a C code, which performs functions such as opening a specific file, mapping the virtual

and the physical addresses, data transfer between the processor and the designed IP core. The driver code used for

the proposed design consists of following important functions.
(i) open ("/dev/mem", O_RDWR | O_SYNC);

(ii) mmap (0, MAP_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, memfd, dev_base& ~MAP_MASK);

(iii) munmap (mapped_base, 4096);

The driver allocates fixed pages of memory for the processor, or the PL data transfer. Thus, user program can

transfer data, into and out of the FPGA fabric. The driver exposes AXI Lite slave memory mapped address space

and also handles interrupts.

VIII. CONCLUSION

A methodology for implementing a computationally expensive unit as an IP core that is driven using a Linux driver

has been described in this paper. Although the work implemented is confined to Zedboard and FMCOMMS2

combination, implementation for other combinations of Zynq platform is also possible.

The design proposed in this paper, is limited to the implementation of FPGA accelerated FFT, further

implementations can make this FPGA accelerated FFT module to improve the performance of software applications,

running on ARM processor.GNU Radio and IIO Oscilloscope are two applications that run on ARM processor.GNU

Radio software is used to design real-time radio systems.IIO Oscilloscope is a spectrum analyzer, and can be used to

view and study signals. In both these applications, use of FFT module can be required. Due to the reasons mentioned

earlier, use of FPGA accelerated FFT module, would improve the speed and efficiency of these applications.

IX. REFERENCES
[1] Ali Al Ghouwayel and Yves Louët,”FPGA Implementation of a Re-configurable FFT forMulti-standard Systems in Software Radio

Context”,May 2009,IEEE Transactions on Consumer Electronics, Vol. 55

[2] G. William Slade,” The Fast Fourier Transform in Hardware: A Tutorial Based on an FPGA Implementation”, March 21, 2013

[3] http://man7.org/linux/man-pages//man2/munmap.2.html

[4] https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/software/linux/zynq_2014r2

[5] https://wiki.analog.com/resources/fpga/docs/build

[6] http://www.fpgadeveloper.com/2014/08/creating-a-custom-ip-block-in-vivado.html

[7] https://wiki.gnuradio.org/index.php/Zynq

[8] https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf

[9] https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf

[10] https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug910-vivado-getting-started.pdf

[11] Matteo Frigo, Steven G. Johnson,” FFTW: AN ADAPTIVE SOFTWARE ARCHITECTURE FOR THE FFT”, 1998 IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP '98

[12] Muhammed Al Kadi, Diana Gohringer,Michael Hubner,Patrick Rudolph, “Dynamic and partial reconfiguration of Zynq 7000 under Linux”,

2013 International Conference on Reconfigurable Computing and FPGAs (ReConFig)

[13] Yan Han,Erdal Orukulu,”Real time traffic sign recognition based on Zynq FPGA and ARM SoCs” , IEEE International Conference On

Electro/Information Technology

[14] Zedboard Getting Started Guide,Version 7.0,2017 Avnet,Inc.AVNET

http://man7.org/linux/man-pages/man2/munmap.2.html
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/software/linux/zynq_2014r2
https://wiki.analog.com/resources/fpga/docs/build
http://www.fpgadeveloper.com/2014/08/creating-a-custom-ip-block-in-vivado.html
https://wiki.gnuradio.org/index.php/Zynq
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug910-vivado-getting-started.pdf
https://ieeexplore.ieee.org/xpl/conhome/5518/proceeding
https://ieeexplore.ieee.org/xpl/conhome/5518/proceeding
https://ieeexplore.ieee.org/author/37085472209
https://ieeexplore.ieee.org/author/37393007400
https://ieeexplore.ieee.org/author/37300247900
https://ieeexplore.ieee.org/author/37086678124
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6720231
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6863137
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6863137
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6863137

