
International Journal of New Innovations in Engineering and Technology

Volume 8 Issue 1 – April 2018 17 ISSN: 2319-6319

Performance Comparison between Column

Store NoSQL Databases

Preeti Bhatt*

* D.C.S.A. Panjab University sector-14 Chandigarh

Preeti.gcg@gmail.com

Abstract- After the emergence of cloud computing and other distributed applications, the need of a non-relational

database increases that can handle large volumes of unstructured or semi-structured data. Not only SQL (NoSQL)

database is distributed, non-relational database which provide scalability and availability and provide a variations in

database which we can choose according to our application’s requirement. In this paper we describe the column-store

NoSQL databases and the performance comparison between them.

Keywords- Non-Relational, NoSQL, Column Store Databases, Scalability, Distributive Databases.

I.INTRODUCTION

Column-store NoSQL databases are very popular in social networking websites, mobile apps, google projects,

medical fields and provide High availability, faster access and consistency and partition tolerance. In a column-store

NoSQL database, data is stored in columns that are logically grouped into column families. Column-family consists

of rows which contains columns. Rows are referenced by row keys which is unique identifier of that row. Column

structure consists of name, value and timestamp. Figure 1 shows the structure of column in column store database.

Figure1: Structure of column in column-store databases

1.1 The Structure of a Column Store Database

All columns belong to a column–family and column family belongs to keyspace. Column families can contain any

number of columns that can be created at runtime or while defining the schema. Column-family consist of multiple

rows. Each row consists of any number of columns. Column structure (size and name) in each row need not be the

same. Figure2: shows three customer records.

Figure1: A column-family structure shows variable customer information

International Journal of New Innovations in Engineering and Technology

Volume 8 Issue 1 – April 2018 18 ISSN: 2319-6319

1.2 Benefits of Column Store Databases

Some key benefits of columnar databases include:

 Compression: Column stores provide optimized data compression.

 Aggregation queries. Faster execution of aggregation queries due to wide column structure.

 Scalability. Columnar databases are very scalable. They are well suited to massively parallel processing

(MPP), which involves having data spread across a large cluster of machines – often thousands of machines.

 Fast to load and query: Immediately load, query and analyze any number of tables.

 Preserving Disk Space: Unlike RDBMS, Column Store databases solves sparse data problem by ignoring

blank padding null value and don’t require fields to always be present. Thus preserves disk space.

 Easy Data Retrieval: Rather than using the complex Structured Query Language (SQL) join, all related

information can be retrieved using a single record ID with little data analyses and upfront modeling.

 More Efficient and less Error Prone.: Column store NoSQL database if more efficient in storage and less

error prone in development for complex and variable relational data structure.

 Faster access: Storing data in columns gives faster search and data aggregation as compared to storing data in

rows (in RDBMS) because in Column store databases stores all the cells corresponding to a column as a

continuous disk entry thus makes the search/access faster. But RDBMS stores different rows at different

places in disk.

Like relational databases, the concept of rows and columns and structure of data is known before loading data

into database. However, data is organized in columns instead of rows for faster access. This column centric data

organization make it ideal for searching records against multiple columns and for running aggregate functions.

Column stores are also named as Big Tables, reflecting their common ancestor, Google’s Bigtable.

1.3 Use cases: Developers mainly use column databases in:

 Content management systems

 Blogging platforms

 Systems that maintain counters

 Services that have expiring usage

 Systems that require heavy write requests (like log aggregators)

1.4 When should column store database be used?

 For semi-structured data, Column store database is used because it requires scalability and high performance.

 Queries that involve only a few columns

 Aggregation queries against vast amounts of data

 Column-wise compression

1.5 When should column store database be avoided?

 If you have to use complex querying.

 If you’re querying patterns frequently change.

 If you don’t have an established database requirement.

 Incremental data loading

 Online Transaction Processing (OLTP) usage

 Queries against only a few rows

Examples of column store NoSQL databases are Cassandra [15], Apache Hadoop HBase [17], BigTable [16],

HyperTable, DynamoDB [14], and Click House.

International Journal of New Innovations in Engineering and Technology

Volume 8 Issue 1 – April 2018 19 ISSN: 2319-6319

II.RELATED WORK

[1] Did some performance test on Hbase column-store database, including column-family test conclude that when

we increase number of column families then the reading and writing speed becomes slower because in Hbase each

column family is stored separately. Sorting test says there is no difference in performance when row keys are written

in lexicographic or reverse lexicographic order because HBase uses B-tree storage with write cache and the speed

does not affected by number and order of writes. Query test says that query speed increases with multi-cluster

environment because HBase tables have simple key-value pair’s relations and have very loose structure.
Amazon S3 [2] as a storage technology provides availability, scaling and reliability by synthesizing technologies.

[3] Did performance comparison between MongoDB, Redis, couchbase, Cassandra and HBase. [4,5] describe a lab-
based benchmark which uses a measurement tool named YCSB(Yahoo Cloud Serving Benchmark).Write
performance of HBase is improved by using a memory and Cassandra by using a log disk. [6,7] Presents NoSQL
benchmark and capabilities in dataset generation and workload with advanced YCSB++ to benchmark advanced
features of column store databases. [8,9] compares and tests MongoDB and Cassandra based of main characteristics
such as data loading, only read, read –modify-write, only updates, reads and updates using YCSB as measurement
tool. [10] Proposed the brief description on MongoDB and CouchBase and compare insertion and retrieval time of
databases to insert or retrieve various size images in databases using Java as front end tool. [11] analyzed the
performance of CouchDB and Elasticsearch based on insertion, deletion, updating and selection operations and
conclude that CouchDB works efficiently on insertion, deletion and update operation but Elasticsearch works much
better in case of selection operation. [12] Compares NoSQL databases based on few features such as Replication,
Storage type, CAP features, and Map Reduce and also did time comparison between insertions, deletion, updating
operation. [13] Summarized main features of three databases named BigTable, DynamoDB, and Cassandra and do
comparison and contrast between them.

III.COMPARITIVE ANALYSIS OF COLUMN STORE NOSQL DATABASES

Table1: The Comparison and contrast of column store databases

Column Store

Databases
Cassandra DynamoDB BigTable Hbase Hyper Table

Development

language

Java Java, Net, Perl,

JavaScript, C#

JACOB Java C++

Storage type Wide column

store

Hybrid:

Document store

Key-value store

Wide column

store

Wide column store Wide Column Store

Developer Apache Software

Foundation
(2008)

Amazon (2012) Google (2015) Power Set

(2007),
Apache Software

Foundation (2008)

Zvents Inc. (2008)

Influences/Spons

ors

Dynamo

Facebook/Digg/R

ackspace

Amazon BigTable BigTable Google’s BigTable

Protocol TCP/IP TCP/IP TCP/IP TCP/IP TCP/IP

Transactions No (Local-
Atomicity and

isolation are

supported for
single operations)

ACID Atomic single-
row operations

Single row ACID
(across millions of

columns)

No

Replication Selectable

replication factor

Yes Internal

replication in

Colossus, and
regional

replication

between two
clusters in

different zones

Master-master

replication,

Master-slave
replication

Selectable replication

factor on file system level

Concurrency Two-Phase
Locking

(Deadlock

Optimistic
Concurrency

Control (OCC)

No Multi-version
Concurrency Control

(MVCC)

Multi-Version
Concurrency Control

(MVCC)

International Journal of New Innovations in Engineering and Technology

Volume 8 Issue 1 – April 2018 20 ISSN: 2319-6319

Prevention),

Optimistic
Concurrency

Control (OCC)

Triggers Yes Yes No Yes No

CAP Theorem High Availability,

Partition

tolerance.

High Availability,

Partition tolerance

Consistency,

Partition tolerance

Consistency, Partition

tolerance

Consistency, Partition

tolerance

Operating

System/Platform

Cross-platform Cross-platform Google Cloud

Platform

Cross-platform Cross-platform

Data Storage Disk Binary-Value

Object

Disk Disk Disk

Persistence Yes Yes Yes Yes Yes

High Availability Yes distributed Yes No No No

Rack locality

awareness

Yes (Inherited

from Hadoop)

No Yes Yes (Inherited from

Hadoop)

Yes (Inherited from

Hadoop)

License type Open Source

Apache 2.0

Commercial Commercial

Open Source

Apache 2.0

Open Source (GNU

General Public License

2.0)

Map reduce Yes No Yes Yes Yes

Consistency Eventually
consistent

Eventual
Consistency,

Immediate

Consistency

Immediate
consistency (for a

single cluster),

Eventual
consistency (for

two or more

replicated
clusters)

Eventual Consistency
or

Immediate

Consistency

Immediate Consistency

Querying Cassandra Query

Language (CQL)

SQL (Map Reduce)

1. Look Up (Read
a Single Row)

2. Scan (Read a

subset of rows)
3. Write

4. Delete

5.Customized
Scripts

(Map Reduce)

Get, Put, Scan and
Delete. DDL

operations, e.g.,

Create.

HyperTable Query

Language (HQL)

Partitioning

scheme

Consistent

Hashing,

Sharding

Sharding Sharding Sharding Sharding

Replication mode Async Async Async Async Async

Scalability Liner scalability Incremental
(Massive and

seamless

scalability)

High
massively scalable

High scalability High scalability

Database

applicability

Facebook,

Instagram, eBay,

Netflix etc.

The web, social,

mobile apps.

Applicable for

google projects

and products

Medical, Sports, Oil

and Petroleum, E-

Commerce, Social
networking, Web

analytics, sorted URL lists,

messaging applications

API Get, Put RESTful HTTP

API

(Put, get)

gRPC (using

protocol buffers)

API
HappyBase

(Python library)

HBase compatible
API (Java)

Java Client API and

Thrift/REST API

C++ API

Thrift

Data sets (Real

time processing)

Structured and

unstructured

Structured and

unstructured

Structured data Structured and

unstructured

Structured and

unstructured

System
Orientation

Shared-Nothing
(Symmetric)

Shared-Nothing
(Symmetric)

Symmetric Shared Disk Shared Disk

Storage

Architecture

Disk-oriented Disk-oriented Disk-oriented Disk-oriented Disk-oriented

System isolation Serializable Read,
Uncommitted

Read, Committed

Repeatable Read

No Read Uncommitted,
Read Committed

Snapshot isolation

International Journal of New Innovations in Engineering and Technology

Volume 8 Issue 1 – April 2018 21 ISSN: 2319-6319

Data Scheme Scheme free Scheme free Scheme free schema-free, schema

definition possible

Scheme free

Foreign keys Not Supported Not Supported Not Supported Not Supported Not Supported

Joins Not Supported Not Supported Not Supported Not Supported Not supported

Stored

Procedures

Not Supported Not Supported Not Supported Not Supported Not Supported

Views Not Supported Not Supported Not Supported Not Supported Not Supported

Logging Logical Logging,

Physical Logging,
Physiological

Logging,

Command
Logging

Not Supported Physical logging Logical Logging Not Supported

Indexes Skip List, Hash

Table, BitMap

Not Supported Not Supported B+ Tree Not Supported

Checkpoints Non-Blocking,
Consistent,

Blocking, Fuzzy

Not Supported Not Supported Non-blocking Consistent

Query Interface Custom API Custom API,
SQL, Command-

line / Shell

Custom API Custom API Custom API, Command-
line / Shell

Cloud-based only No Yes Yes No No

User Concept Access rights for

users can be
defined per object

Access rights for

users and roles
can be defined via

the AWS Identity

and Access
Management

(IAM)

Access rights for

users, groups and
roles based on

Google Cloud

Identity and
Access

Management

(IAM)

Access Control Lists

(ACL) for RBAC,
integration with

Apache Ranger for

RBAC & ABAC

No

Durability Yes Yes Yes Yes Yes

Server-side
scripts

No No No Yes (Coprocessors in
Java)

no

Supported

programming

languages

C#

C++

Clojure
Erlang

Go

Haskell
Java

JavaScript info

Perl
PHP

Python
Ruby

Scala

Net

ColdFusion

Erlang
Groovy

Java

JavaScript
Perl

PHP

Python
Ruby

C#

C++

Go
Java

JavaScript

(Node.js)
Python

C

C#

C++
Groovy

Java

PHP
Python

Scala

C++

Java

Perl
PHP

Python

Ruby

IV.CONCLUSION

In this paper we describe structure of column store databases and their benefits and did comparative analysis of

various column-store databases. We found that Cassandra and DynamoDB gives high Availability and Partition

tolerance but HBase, BigTable and HyperTable gives Consistency and Partition tolerance. BigTable doesn’t support

concurrency control. Cassandra supports Master-Slave Architecture and HBase support Hadoop Distributive

Architecture. Today Facebook and other social networking websites prefer Cassandra over HBase because of its

availability, open source, minimal administration, no SPoF (Single Point of Failure) and provide security in every

financial transaction. Companies like Bloomberg, Bank of America, Verizon and much more using HBase. HBase is

good at intensive reads, whereas Cassandra is good at writes. Cassandra Lacks data consistency while HBase lacks

data availability. Each database has its own advantages and disadvantages.

International Journal of New Innovations in Engineering and Technology

Volume 8 Issue 1 – April 2018 22 ISSN: 2319-6319

REFERENCES

[1] Naheman W, Wei J. Review of NoSQL databases and performance testing on HBase. InProceedings 2013 International Conference on
Mechatronic Sciences, Electric Engineering and Computer (MEC) 2013 Dec 20 (pp. 2304-2309). IEEE.

[2] DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W. Dynamo:
amazon's highly available key-value store. InACM SIGOPS operating systems review 2007 Oct 14 (Vol. 41, No. 6, pp. 205-220). ACM.

[3] Tang E, Fan Y. Performance comparison between five NoSQL databases. In2016 7th International Conference on Cloud Computing and
Big Data (CCBD) 2016 Nov 16 (pp. 105-109). IEEE

[4] Tudorica BG, Bucur C. A comparison between several NoSQL databases with comments and notes. In2011 RoEduNet international
conference 10th edition: Networking in education and research 2011 Jun 23 (pp. 1-5). IEEE.

[5] Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud serving systems with YCSB. InProceedings of the 1st
ACM symposium on Cloud computing 2010 Jun 10 (pp. 143-154). ACM.

[6] Reniers V, Van Landuyt D, Rafique A, Joosen W. On the state of nosql benchmarks. InProceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering Companion 2017 Apr 18 (pp. 107-112). ACM.

[7] Patil S, Polte M, Ren K, Tantisiriroj W, Xiao L, López J, Gibson G, Fuchs A, Rinaldi B. YCSB++: benchmarking and performance
debugging advanced features in scalable table stores. InProceedings of the 2nd ACM Symposium on Cloud Computing 2011 Oct 26 (p. 9).
ACM.

[8] Abramova V, Bernardino J. NoSQL databases: MongoDB vs cassandra. InProceedings of the international C* conference on computer
science and software engineering 2013 Jul 10 (pp. 14-22). ACM.

[9] Jayathilake D, Sooriaarachchi C, Gunawardena T, Kulasuriya B, Dayaratne T. A study into the capabilities of NoSQL databases in handling
a highly heterogeneous tree. In2012 IEEE 6th International Conference on Information and Automation for Sustainability 2012 Sep 27 (pp.
106-111). IEEE.

[10] Chopade MR, Dhavase NS. Mongodb, couchbase: performance comparison for image dataset. In2017 2nd International Conference for
Convergence in Technology (I2CT) 2017 Apr 7 (pp. 255-258). IEEE.

[11] Gupta S, Rani R. A comparative study of elasticsearch and CouchDB document oriented databases. In2016 International Conference on
Inventive Computation Technologies (ICICT) 2016 Aug 26 (Vol. 1, pp. 1-4). IEEE.

[12] Kumar KS, Mohanavalli S. A performance comparison of document oriented NoSQL databases. In2017 International Conference on
Computer, Communication and Signal Processing (ICCCSP) 2017 Jan 10 (pp. 1-6). IEEE.

[13] Kalid S, Syed A, Mohammad A, Halgamuge MN. Big-data NoSQL databases: A comparison and analysis of “Big-Table”,“DynamoDB”,
and “Cassandra”. In2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(2017 Mar 10 (pp. 89-93). IEEE.

[14] https://aws.amazon.com/dynamodb/

[15] http://cassandra.apache.org/

[16] https://cloud.google.com/bigtable/

[17] https://hbase.apache.org/

https://aws.amazon.com/dynamodb/
http://cassandra.apache.org/
https://cloud.google.com/bigtable/
https://hbase.apache.org/

