
International Journal of New Innovations in Engineering and Technology 

 

 

 

Volume 7 Issue 2– Mar 2017                                                      26                                                                           ISSN: 2319-6319 
 

 

 

Performance Comparison between Key-Value 

NoSQL Databases  

Preeti Bhatt* 
* D.C.S.A. Panjab University sector-14 Chandigarh 

Preeti.gcg@gmail.com 

 
Abstract- These days, large number of applications produces unstructured content which is very complex or impossible to 

manage with relational databases. These applications support cloud computing and demands a database that can handle 

these unstructured data as well as structured data without lacking scalability, consistency and availability. Key-value 

store databases are not the complete replacement of relational databases but help in handling unstructured, semi-

structured and structured data. In this paper we describe Key-value store database, their features and perform 

comparison between various key-value store databases. 

Keywords- Non-Relational, NoSQL, Key-value Store Databases, Scalability, Distributive Databases.  

 

I.INTRODUCTION 

A key-value database is a type of NoSQL database that stores data in the form of a simple key/value pair. Many 

programming languages uses this concept of key-value pair typically referred as an associative array or data 

structure. Hash or data dictionary is also example of key-value. 

 
Table -1 Phone Directory 

Key Value 

Ramesh (123) 456-7890 

Saurabh (234) 567-8901 

Tina (345) 678-9012 

Tarun (456) 789-0123 
 

1.1 What Type of Data can be stored in a Key-Value Database? 

The Key: In the key-value pair, key must be unique that allow to access the value associated with that key. Key size 

and data type may vary in different NoSQL databases. For example, In Redis, key size of at most 512MB is allowed. 

Binary sequence, image file, short string can be used as a key. Key should not be too long and not too short. A key 

that is too long should be avoided. A key that is too short cause readability issues. 
The Value: Key value can be a number, short text or long text, programming code such as VBScript, JavaScript, 

PHP, HTML markup code, an image, list or an object which encapsulate another key-value pair etc. 

1.2 When to use key-value stores? 

Key-value store database can be used to store following:- Emails, User profiles, blog comments, Ecommerce, 

Session information, Product categories, Product reviews, Data deduplication, Telecom directories, Product details, 

Status messages, Shopping cart contents, Internet Protocol (IP) forwarding tables, Networking data maintenance, 

Product recommendations, Session management at high scale. Example of Key-Value store databases are:- Redis 

[16], Oracle NoSQL Database, Voldemorte, Aerospike [18], Oracle Berkeley DB, DynamoDB [14], Couchbase 

[15], Riak [17], memcached [19]. 

1.3 Features of key-value stores database? 

 Flexible data structure (schema-free) 

 There is no need of schema definition or upfront data modeling because the value is stored in blob.  

 Blob removes the need to index the data to improve performance. 

 Closely follows object-oriented programming concepts. 



International Journal of New Innovations in Engineering and Technology 

 

 

 

Volume 7 Issue 2– Mar 2017                                                      27                                                                           ISSN: 2319-6319 
 

 

 

 Key-value uses less memory to store database lead to large performance gain. 

 Key value store databases uses no query language. Get, put and delete commands are used to store, retrieve and 

update data. 

 Simple data retrieval by direct request on disk or to the object in memory makes key-value store databases fast, 

scalable, easy to use, flexible, and portable. 

II.RELATED WORK 

Amazon developed storage technologies such as Amazon S3 [1] to achieve reliability and scaling; uses a synthesis 

of various technologies to meet scalability and availability needs.  We studied the literature [2] in which the author  

analyzed the performance of CouchDB and Elasticsearch based on insertion, deletion, updating and selection 

operations and conclude that CouchDB works efficiently on insertion, deletion and update operation but 

Elasticsearch works much better in case of selection operation. [3] Did performance comparison between 

MongoDB, Redis, couchbase, Cassandra and HBase. [4,5] describe a lab-based benchmark which uses a 

measurement tool named YCSB(Yahoo Cloud Serving Benchmark).Some features in NoSQL databases  are similar 

as Relational database but the behaviors are different. [6] Did some performance test on Hbase column-store 

database, including column-family test conclude that when we increase number of column families then the reading 

and writing speed becomes slower because in Hbase each column family is stored separately. [7] Suggests Yahoo! 

Cloud Serving Benchmark(YCSB) for key-value store database as its able to perform read, write, update, scan 

operation well.  [8] Describe the architecture of Couchbase servers and its evolution in detail. 
Couchbase internal architecture supports OLTP like workload. [9] Compares and tests NoSQL databases based on 
main characteristics such as data loading, reads, only read, read –modify-write, only updates and updates using YCSB 
as measurement tool. [10] Compares and tests MongoDB and Cassandra based of main characteristics such as data 
loading, only read, read –modify-write only updates, reads and updates using YCSB as measurement tool. [11] 
analyzed the Memchached database against size of key-value pair and number of client and perform optimization 
techniques such as Interrupt blanking and zero copying.[12] introduced a high performance key-value benchmark that 
can interconnect web-scale workloads. [13] Proposed the client-coordinated transaction protocol that is built as a Java 
library that gives multi item transaction over heterogeneous key value data stores and YCSB benchmark is used as 
measurement tool. 

III.COMPARITIVE ANALYSIS OF KEY-VALUE STORE NOSQL DATABASES 

 
Table1: The Comparison and contrast of Key-Value NoSQL databases 

 

 Redis DynamoDB Aerospike Couchbase Memchached 

Development 

language 
C 

Java, Net, Perl, 

JavaScript, C# 
C 

C, C++, Erlang, 

Go 

C 

Storage type 
Key-value store 

 

Document store 
Key-value store 

 

Key-value store 
Key-value store 

Document store 

Key-value store 

Developer 

Salvatore Sanfilippo 

(developer at Redis 
Lab) (2009) 

Amazon (2012) Aerospike (2012) 
Couchbase, Inc. 

(2011) 

Danga Interactive 

(2003) 

Transactions Optimistic locking, 

atomic execution of 
commands blocks and 

scripts 

ACID Atomic execution 

of operations 

Single-document 

ACID transactions 

No 

Replication Master-slave 

replication  

Multi-master 

replication 

Yes selectable 

replication factor 

Master-master 

replication 

Master-slave 

replication 

No 

Concurrency Not Supported  Optimistic 
Concurrency Control 

(OCC) 

Yes Optimistic 
Concurrency 

Control (OCC) 

Not Supported 

Triggers No Yes No Yes No 

CAP Theorem Consistency, Partition 

tolerance 

High Availability, 

Partition tolerance 

both 

AP(Availability 
and Partition 

tolerance) mode 

Consistency, 

Partition tolerance 

Consistency, 

Partition 
tolerance 



International Journal of New Innovations in Engineering and Technology 

 

 

 

Volume 7 Issue 2– Mar 2017                                                      28                                                                           ISSN: 2319-6319 
 

 

 

and Strong 

Consistency 
Mode 

Operating 

System/Platform 

POSIX Systems Cross-platform Linux / Unix-like Cross platform Cross platform 

High Availability No Yes Yes No No 

License type Open Source 

(BSD 3-clause) 

Commercial Open Source 

AGPL(Affero 
General Public 

License) 

Open Source 

Apache License 
2.0 

Open source 

(BSD license) 

Map reduce No No Yes Yes No 

Consistency Strong eventual 

consistency with 
CRDTs 

Eventual Consistency 

Eventual Consistency, 

Immediate 
Consistency 

Eventual 

Consistency in 
cross-datacenter 

configuration and 
Immediate 

Consistency in 

local cluster 
configuration 

Eventual 

Consistency 
Immediate 

Consistency 

Yes 

Querying Custom API 

Complex query 

support 

SQL AQL Declarative query 

language (N1QL) 

that extends ANSI 
SQL to JSON. 

First commercial 

implementation of 
SQL++. 

API Calls 

Set, Add, Get, 

Delete 

Partitioning 

scheme 

Consistent Hashing, 

Sharding 

Sharding Sharding Sharding None  

Scalability Liner scalability Incremental 
(Massive and 

seamless scalability) 

linear scalability Multi-dimentioal 
scalability 

High Scalability 

API RESP-Redis 
Serializable Protocol  

RESTful HTTP API 
(Put, get) 

Proprietary 
protocol 

JDBC 

Native language 
bindings for 

CRUD, Query, 

Search and 
Analytics APIs 

Custom API 
Get,Set 

operations 

Storage 

Architecture 

Disk-oriented Disk-oriented Disk-oriented Disk-oriented In-Memory 

System isolation Serializable Read, Uncommitted 
Read, Committed 

Repeatable Read 

Multi-record 
isolation and 

consistency 

Read Committed,  
Serializable 

No 

Data Scheme Scheme free Scheme free Scheme free schema-free schema-free 

Foreign keys Not Supported Not Supported Not Supported Not Supported Not Supported 

Joins Not Supported Not Supported Not Supported Nested Loop Join Not Supported 

Stored Procedures Not Supported Not Supported Not Supported "Prepared queries" 
supported 

Not Supported 

Views Not Supported Not Supported Not Supported Materialized 

Views 

Not Supported 

Logging Command Logging Not Supported Log callback 
interface 

Logical Logging Not Supported 

Indexes Hash Table Not Supported Hash Table with 

a distributed tree 
structure 

B+Tree Skip List 

Hash Table 
Inverted Index 

(Full Text) 

Hash Table 

Cloud-based only No Yes No No No 

User Concept Simple password-

based access control 

Access rights for 

users and roles can be 
defined via the AWS 

Identity and Access 

Management (IAM) 

Access rights for 

users and roles 

User and 

Administrator 
separation with 

password-based 

and LDAP 
integrated 

Authentication 

Uses 

SASL(Simple 
Authentication 

and Security 

layer) Protocol 

Durability Yes Yes Yes Yes No 

Server-side scripts Lua No user defined Functions and No 



International Journal of New Innovations in Engineering and Technology 

 

 

 

Volume 7 Issue 2– Mar 2017                                                      29                                                                           ISSN: 2319-6319 
 

 

 

functions with 

Lua 

timers in 

JavaScript 

 

IV.CONCLUSION 

 

In this paper we describe key-value store databases, their features and perform comparative analysis of various key-

value store databases. We conclude that the Redis database is rich in features and widely popular key-store database. 

Memcached is used as a caching system. Although Redis and Memcached doesn’t provide concurrency and 

availability but provide strong consistency. Memcached has in-memory storage architecture but not durable and 

don’t have isolation property because it doesn’t support transactions and concurrency. 

REFERENCES 

[1] DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W. Dynamo: 
amazon's highly available key-value store. InACM SIGOPS operating systems review 2007 Oct 14 (Vol. 41, No. 6, pp. 205-220). ACM. 

[2] Gupta S, Rani R. A comparative study of elasticsearch and CouchDB document oriented databases. In2016 International Conference on 
Inventive Computation Technologies (ICICT) 2016 Aug 26 (Vol. 1, pp. 1-4). IEEE. 

[3] Tang E, Fan Y. Performance comparison between five NoSQL databases. In2016 7th International Conference on Cloud Computing and 
Big Data (CCBD) 2016 Nov 16 (pp. 105-109). IEEE 

[4] Tudorica BG, Bucur C. A comparison between several NoSQL databases with comments and notes. In2011 RoEduNet international 
conference 10th edition: Networking in education and research 2011 Jun 23 (pp. 1-5). IEEE. 

[5] Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R. Benchmarking cloud serving systems with YCSB. InProceedings of the 1st 
ACM symposium on Cloud computing 2010 Jun 10 (pp. 143-154). ACM. 

[6] Naheman W, Wei J. Review of NoSQL databases and performance testing on HBase. InProceedings 2013 International Conference on 
Mechatronic Sciences, Electric Engineering and Computer (MEC) 2013 Dec 20 (pp. 2304-2309). IEEE. 

[7] Patil S, Polte M, Ren K, Tantisiriroj W, Xiao L, López J, Gibson G, Fuchs A, Rinaldi B. YCSB++: benchmarking and performance 
debugging advanced features in scalable table stores. InProceedings of the 2nd ACM Symposium on Cloud Computing 2011 Oct 26 (p. 9). 
ACM. 

[8] Borkar D, Mayuram R, Sangudi G, Carey M. Have your data and query it too: From key-value caching to big data management. 
InProceedings of the 2016 International Conference on Management of Data 2016 Jun 26 (pp. 239-251). ACM. 

[9] Jayathilake D, Sooriaarachchi C, Gunawardena T, Kulasuriya B, Dayaratne T. A study into the capabilities of NoSQL databases in handling 
a highly heterogeneous tree. In2012 IEEE 6th International Conference on Information and Automation for Sustainability 2012 Sep 27 (pp. 
106-111). IEEE. 

[10] Abramova V, Bernardino J. NoSQL databases: MongoDB vs cassandra. InProceedings of the international C* conference on computer 
science and software engineering 2013 Jul 10 (pp. 14-22). ACM. 

[11] Chidambaram V, Ramamurthi D. Performance analysis of memcached. unpublished Manuscript.[Online]. Available: http://citeseerx. ist. 
psu. edu/viewdoc/download. 

[12] Shankar D, Lu X, Wasi-ur-Rahman M, Islam N, Panda DK. Benchmarking key-value stores on high-performance storage and interconnects 
for web-scale workloads. In2015 IEEE International Conference on Big Data (Big Data) 2015 Oct 1 (pp. 539-544). IEEE. 

[13] Dey A, Fekete A, Röhm U. Scalable transactions across heterogeneous NoSQL key-value data stores. Proceedings of the VLDB 
Endowment. 2013 Aug 28;6(12):1434-9. 

[14] https://aws.amazon.com/dynamodb/ 

[15] https://www.couchbase.com/ 

[16] https://redis.io/ 

[17] https://riak.com/ 

[18] https://www.aerospike.com/ 

[19] https://memcached.org/ 

 

 

 

https://aws.amazon.com/dynamodb/
https://www.couchbase.com/
https://redis.io/
https://riak.com/
https://www.aerospike.com/
https://memcached.org/

