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I. INTRODUCTION 

After the introduction of fuzzy set by L. A. Zadeh [36] in 1965 different types of fuzzy real-valued sequence spaces 

have been introduced and studied by several mathematicians by using the notion of fuzzy real numbers. Agnew [1] 

studied the summability theory of multiple sequences and obtained certain theorems which have already been 

proved for double sequences by the author himself. In order to generalize the idea of convergence of real sequences, 

Kostyrko, Šalát and Wilczyński [17] introduced the idea of ideal convergence for single sequences in 2000-2001. 

Later on it was further developed by Šalát et al. ([18], [27]), Kumar and Kumar [20], Tripathy and Tripathy [35], 

Das et al. [6], Sen and Roy [30], Nath and Roy [21], Nath and Roy [22] and many others.   

             The different types of notions of multiple sequences was introduced and investigated at the initial stage by 

Sahiner et al. [26], Kumar et al. [19], Dutta et al. [8], Savas and Esi [29], Esi ([11], [12]). Some more works on 

fuzzy triple sequences are found in ([23], [24]).                                                                                         

A lacunary sequence is an increasing integer sequence 
,......)3,2,1,0(  rkr

of positive integers such 

that 
00 k

 and 
 1rrr kkh

as .r  The intervals determined by   will be defined by 

],( 1 rrr kkJ   and the ratio 1r

r

k

k

 will be defined by 
.rq
 

Friday and Orhan [ 13] introduced the concept of lacunary statistical convergence in 1993. Different classes of 

lacunary sequences have been studied by some renowned researchers. Nuray [25],  Demirci [7], Bligin [5], Altin et 

al. ([2], [3]), Altin [4], Gokhan et al. [14], Subramanian and Esi [31], Esi [10], Savas [28], Tripathy and Baruah [32], 

Dutta et al. [9], etc. Are some of them.. The concept of lacunary I-convergence was introduced in [33]. More works 

on lacunary I-convergence was found on ([15], [ 16],[34]) etc.  

A fuzzy real number on R  is a mapping 
])1,0[(:  LRX

 associating each real number Rt  with its grade 

of membership X (t).Every real number r can be expressed as a fuzzy real number r as follows:  

r  (t) =

 

otherwise

rtif

0

1

 

               The -level set of a fuzzy real number X ,
,10 
denoted by  

][X
is defined as     

}.)(:{][   tXRtX
 

A fuzzy real number X is called convex if 
 )()()( rXsXtX

 min
)),(),(( rXsX

 where .rts  If there 

exists
Rt 0 such that 

,1)( 0 tX
 then the fuzzy real number X  is called normal. A fuzzy real number X is said to 

be upper semi-continuous if for each 
,0
\ )),,0[1  aX  for all La  is open in the usual topology of .R The 
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set of all upper semi continuous, normal, convex fuzzy number is denoted by
).(LR

The additive identity and 

multiplicative identity in 
)(LR

are denoted by 0 and 1  respectively.    

               Let D be the set of all closed bounded intervals 
 RL XXX ,

 on the real line R. Then                 

YX  if and only if 
LL YX   and  .RR YX   Also let 

 ). | Y-| , | -| (max     ),( RLRL YXXYXd 
 

Then 
),( dD

is a complete metric space.                                      

                     Let 
RLRLRd  )()(:

be defined by 

.)(,for  , )][,]([sup),(
10

LRYXYXdYXd 




  

Then d defines a metric on 
).(LR

 

Let X be a non empty set. A non-void class 
XI 2  (power set of X) is said to be an ideal if I is additive and 

hereditary, i.e. If I satisfies the following conditions: 

(i)  
IBAIBA  ,

and  (ii) .     IBABandIA   

A non-empty family of sets 
XF 2 is said to be a filter on X  if 

(i)  F (ii) A, B  F  A  B  F and (iii)  A  F and A  B  B F.  

For any ideal I, there is a filter F(I)  given by  
}. \ : {)( IKNNKIF 

 

An ideal 
XI 2  is said to be non-trivial if I  and X  I. Clearly 

XI 2 is a non-trivial ideal if and only if 

} :{)( IAAXIFF 
 is a filter on X.  

A non-trivial ideal I is called admissible if and only if 
  .:}{ INnn 

  A non-trivial ideal I is maximal if there 

cannot exists any nontrivial ideal IJ   containing I as a subset.                                                     

A subset E of NNN   is said to have density 
)(E

 if 

  




p

n

q

l

r

k

E
rqp

klnE
1 1 1

,,
),,( lim)( 

 exists 

where E  is the characteristic function of E. 

Throughout the article, the ideals of 
NNN 2 will be denoted by 

.3I
 

Example 1.1. Let 
NNNI  2)(3 

i.e. The class of all subsets of NNN  of zero natural density. Then 
)(3 I

 

is an ideal of
NNN 2 .  

Example 1.2. Let 
)(3 PI

be the class of all subsets of NNN  such that
)(3 PID

 implies  

That there exists 
Nlm 000 ,n , 

such that  

 }. , ,:),,{( 000 llnnmmNNNlnmNNND 
 

Then 
)(3 PI

 is an ideal of .2 NNN 

 

 

II. PRELIMINARIES AND BACKGROUND 

In this section, some fundamental notions, which are closely related to the article, are recalled. 

Throughout the article 
)( ),( ),( ),( 03333

FFFF ccw   denote the spaces of all, bounded, convergent in 

Pringsheim’s sense, null in Pringsheim’s sense fuzzy real-valued triple sequences respectively.  

                A triple sequence can be defined as a function 
).(: CRNNNx 

where N, R and C denote the 

sets of natural and real numbers respectively.  

.A fuzzy real valued triple sequence mnlXX 
 is a triple infinite array of fuzzy real numbers mnlX

 for all 

Nlnm  , ,
 and is denoted by mnlX

 where
).(  LRX nlk    
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A fuzzy real-valued triple sequence mnlXX 
is said to be convergent in Pringsheims sense to 

The fuzzy real number X, if for every
,,0 

 
Nllnnmm  )(),(),( 000000 

such  

That 
),( XXd mnl  for all 

.,, 000 llnnmm 
 

A fuzzy real-valued triple sequence mnlXX 
 is said to be 3I

-convergent to the fuzzy number 
,0X
 if for all 

,0
the set 

  .} ),(:),,{( 30 IXXdNNNlnm mnl  
We write 

.  lim 03 XXI mnl 
 

A fuzzy real-valued triple sequence mnlXX 
is said to be 3I

-bounded if there exists a real number 


 such that 

the set 
.})0,(,:),,{( 3IXdNNNlnm mnl  
.  

 

Lacunary triple sequence 

 

A triple sequence 
   ......),2,1,0,,(,,,,  psrlnm psrpsr  of positive integers is said to be lacunary if 

there exists three increasing sequences of integers 
     

psr lnm ,,
 such that 

  rasmmhm rrr 10 ,0
 

  rasnnhn rrr 10 ,0
 

.,0 10   rasllhl rrr  

Let us denote psrpsr lnmm ,,  and psrpsr hhhh ,,  and the intervals are determined by psr ,,
 and it will be 

defined by  

  
pprrrrpsr lllnnnmmmlnmJ   111,, ,,:,,

 and 

.,,
111 


p

p

p

r

r

s

r

r

r
l

l
q

n

n
q

m

m
q

 

A triple sequence mnlx
is said to be psr ,,

 convergent to L if for every 0 and there exists 

Integers 
Nn 0  such that 

 

 
 

o

Jpnm

mnl

psr

npsrLxd
h

psr




,,,
1

,,,,,,



 

.lim,, Lxmnlpsr 
 

Lacunary ideal convergence of fuzzy triple sequences: 

 

 Let  
 

psrpsr m ,,,, 
 be a triple lacunary sequence. Then a triple sequence mnlX

 of fuzzy real numbers is 

said to be lacunary psr
I

,,
-convergent to a fuzzy real numbers L   if for every  

,0
 such that 

   
 

.,
1

:,, 3

,,,, ,,

ILXd
h

NNNpsr
psrJlnm

mnl

psr














 




 

We write 
.lim

,,
LXI mnlpsr


 

 A triple sequence mnlX
 of fuzzy real numbers is said to be lacunary psr

I
,,

 -null if for every 
,0
 such 

that

   
 

.0,
1

:,, 3

,,,, ,,

IXd
h

NNNpsr
psrJlnm

mnl

psr














 



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We write  
.0lim

,,
 mnlXI

psr  

 Let 3I
 be an admissible ideal of NNN  . A triple sequence  mnlX

 is said to be psr
I

,,
- Cauchy if there 

exists a subsequence  
     plsnrm

X ///

 of  mnlX
 such that 

       psrJplsnrm ,,

/// ,, 
 for each  r , s , p 

    ,,,,
lim

psr        
LX

plsnrm
///

 and for every 0  such that 

 
     

 
 

.,
1

:,, 3

,,,, ,,

/// IXXd
h

NNNpsr
psrJlnm

plsnrmmnl

psr














 




 
Lacunary Ideal limit point and cluster point on triple sequence 

 

Definition.  Let  x = mnlx
 be a triple sequence. Then 

An  element  0x
 is  said to be psr

I
,,

limit point of  x = mnlx
 if there is a set 

     NNNlnmlnmM  ............,,, 222111  such that the set 

     3,,

/ ,,:,, IJlnmNNNpsrM psrpsr 
. 

And  0,, lim xxmnlpsr 
. 

An  element  0x
 is  said to be psr

I
,,

- cluster  point of  x = mnlx
   if  for every 0 , we have  

   
 

3

,,,, ,,

,
1

:,, ILxd
h

NNNpsr
psrJlnm

mnl

psr














 




 
 

Let 
 xI

psr ,,
 denote the set of all psr

I
,,

- limit point and  
 xI

psr ,,
 denote the set of all psr

I
,,

-cluster points 

respectively. 

 

III. MAIN RESULTS 

Theorem. 3.1  Let  x = mnlx
 be a triple sequence. Then 

  xI

psr ,,  xI

psr ,,
. 

Proof.  Let 
0x  xI

psr ,,
 be any element. Then there exists a set NNNM   

Such that 
IM /

 where M and 
/M  are in the above  definition . 

0,, lim xxmnlpsr 
. Then for every  0  then there exists  

Nlnm 000 ,,
 such 

 
 

o

Jpnm

mnl

psr

lpnsmrLxd
h

psr




,,,
1

00

,,,, ,,



. Therefore 

   
  











 
 psrJlnm

mnl

psr

Lxd
h

NNNpsrA
,,,,,,

,
1

:,, 

      
900

,,......,,,,,,\ 222111

/

lnm lnmlnmlnmM
 

 

Since I  is admissible, we must have  
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       3222111

/

900
,,......,,,,,,,\ IlnmlnmlnmM lnm 

 

3IA
 

Hence 
0x  xI

psr ,,
. 

Theorem 3.2.  Let  x = mnlx
 be a triple sequence, Then  the following statements are  equivalent 

 0x
 is a psr

I
,,

limit point of  x. 

There exist  two triple sequences  mnly
 and  mnlz

 such that  x = y + z and  0,, lim xymnlpsr 
 and  

     3,, 0,,:,, IzJlnmNNNpsr mnlpsr 
 

Proof. (i) ⇒ (ii)  

 

Let (i) holds.  

Then there is a set 
     NNNlnmlnmM  ............,,, 222111  such that the set 

     3,,

/ ,,:,, IJlnmNNNpsrM psrpsr 
. 

And 0,, lim xxmnlpsr 
. 

Let us define  mnly
 and  mnlz

 as  

mnly
      and   

mnlz
 

If we consider  
  psrJlnm ,,,, 

 such that 
  /,, MNNNpsr 

. Then for each 0 , we have  

 




psrJlnm

mnl

psr

npsrxy
h

,,,,

00

,,

,,||
1



 

Hence 0,, lim xymnlpsr 
 

Now 
     3

/

,, 0,,,:,, IMNNNzJlnmNNNpsr mnlpsr 
 

Therefore (i)  (ii) 

 

(ii)  (i) 

Let  (ii) holds.   Let 
/M = 

     3,, 0,,:,, IzJlnmNNNpsr mnlpsr 
 

Therefore 
 IFM /

 and so it is an infinite set.  

Lt us construct the set 
     NNNlnmlnmM  ............,,, 222111  such that 

psrpsr Jlnm ,,,, 
 and 

0
psr lnmz

. Since psrpsr lnmlnm yx 
and  

0,, lim xymnlpsr 
 

Hence 0,, lim xxmnlpsr 
. This complete the proof. 
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Theorem 3.3.   Let x = mnlx
 be a triple sequence.  Let I be a non-trivial admissible ideal in NNN  . If there 

is a psr
I

,,
 convergent triple sequence  mnlyy 

 such that 
   3:,, IxyNNNpnm mnlmnl 

. 

Then x is also psr
I

,,
 convergent. 

Proof.  Let  
   IxyNNNpnm mnlmnl  :,,

 and 
LyI mnlpsr

 lim
,,

. Then  

For every 0 , the set 

   
 

3

,,,, ,,

,
1

:,, ILyd
h

NNNpsrC
psrJlnm

mnl

psr














 




 

Therefore for  every 0 , we have  

   
 














 
 psrJlnm

mnl

psr

Lxd
h

NNNpsr
,,,,,,

,
1

:,, 

 

   mnlmnl xyNNNpnm :,,
 

   
 

3

,,,, ,,

,
1

:,, ILyd
h

NNNpsr
psrJlnm

mnl

psr














 




 

Therefore 

   
 

3

,,,, ,,

,
1

:,, ILxd
h

NNNpsr
psrJlnm

mnl

psr














 




 

 
 

3

,,,, ,,

||
1

:,, ILx
h

NNNpsr
psrJlnm

mnl

psr














 




 

0x
 is a psr

I
,,

limit point of  x. 

 

IV. CONCLUSION 

Convergence theory is used as a basic tool in, measure spaces, sequences of random variables, information theory 

etc. We have introduced the notion of  lacunary I-convergent multiple sequences of fuzzy real numbers having 

multiplicity greater than two. The relation between lacunary I-convergent and  lacunary I-Cauchy triple sequences is 

obtained. Also some algebraic and topological properties are studied and some inclusion results are derived. The 

introduced notion can be applied for further investigations from different aspects.   
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