
International Journal of New Innovations in Engineering and Technology

Volume 10 Issue 2 March 2019 06 ISSN: 2319-6319

An Efficient Fused Arithmetic Model for

FFT in OFDM applications

Sharmila Hemanandh
1
, A. Sivasubramanian

2

1
Department of Electronics and Communication Engineering, Sathyabama University, Chennai, India

2
Department of Electronics and Communication Engineering, VIT University, Chennai, India.

Abstract - This investigation proposes the radix 2, radix 4 and radix 8 FFT algorithms with improvement in performance

using fused floating point arithmetic units. Multiplication operation dominates the execution time and hardware circuitry

required in implementing the FFT algorithms. This study focuses on the identification of redundant computation in both

FP and FFT modules based on hardware fusion technique. The Distributed Arithmetic (DA) based Canonical Signed

Digit (CSD) technique is applied for suitable mantissa computation. Moreover higher radix indices with improved system

performance are presented without adding any pipelining and parallel processing techniques. The comprehensive

comparison results indicate that the proposed algorithms exhibits reduced area and high operating frequency, and thus

have the highest efficiency.

Keywords: Fast Fourier transform, Distributed Arithmetic, Canonical Signed Digit, Floating Point.

I. INTRODUCTION

Discrete Fourier Transform (DFT) is one of the most important tool used in the field of signal processing for a wide

variety of modern signal processing applications. DFT plays a vital role to analyze the spectral characteristics of a

signal in various digital signal processing applications such as image processing, OFDM, digital terrestrial television

broadcasting, spectral estimation, voice recognition, and other filtering applications. Fast Fourier transform(FFT) is

the most competent algorithm used to compute the DFT using Decimation in Time and Decimation in Frequency

algorithms. High speed data transmission over multipath channel environment with reduced symbol interference is

achieved using OFDM[1]. Hence OFDM commands highly accurate arithmetic model to overcome the

synchronization errors in both time and frequency domain.

Major challenges involved in OFDM system using high precision computation can be the use of floating point

arithmetic that involves more complex arithmetic and logical operations[2]. Each of the functional units can be

optimized to support low complexity and energy efficiency. Secondly FFT optimization and hardware fusion

includes both area and speed constrains of the FFT butterfly unit that can be optimized by FFT factorization of the

twiddle factors. Using hardware fusion reduced arithmetic redundancy is achieved in FFT computation. Previous

research majorly concentrated on factors that include the use of floating point units for efficient FFT computation,

Optimization of floating point arithmetic model and the use of fused arithmetic model to reduce

hardwarecomplexity. A survey of these various factors show that hardware optimization through fusion approach is

used as a simplest process to accomplish low complexity.

Yunhua Wang et al. (2007)[14] proposed a novel real time algorithm to convert 2’s complement number to CSD

using few combinational logic gates. The performance of the iterative multiplier is further improved by introducing

a radix 8 hardware support. The iterative multiplier delivers significant improvement in performance with respect to

speed area and power.

Hani H. Saleh et al. (2008)[7] proposed floating point fused dot product unit that performs floating point

multiplication followed by addition on a pair of data. The fused dot product unit is 27 percent faster and more

accurate than the conventional approach.

Arioua and Hassani (2014)[5] used CSD representation to save the twiddle factors in order to implement the

complex multiplier. Thus the area and power consumption of the complex multiplier is reduced. A low arithmetic

complexity FFT/IFFT processor is designed and developed for high speed low power OFDM based wireless

communication system.

Earl E. Swartz landerJr and Hani H.M. Saleh (2012)[6] proposed two fused units namely two term dot product unit

and add sub unit. The fused units are used in the implementation of radix 2 and radix 4 butterfly elements. The fused

FFT butterflies are 15 percent faster and 30 percent smaller than the conventional implementation.

Prasanna Palsodkar and Ajay Gurjar (2014)[11] proposed designed two fused floating point primitives to speed up

DSP hardware with respect to IEEE754 single precision format that supports all rounding modes.

Prasanna Palsodkar and Ajay Gurjar (2016) [12]analyses the implementation of radix 2 Decimation in Frequency

butterfly unit using the fused units. By the use of fused primitives area is reduced by 27.09% and consumes 11%

less power when compared to the discrete implementation.

International Journal of New Innovations in Engineering and Technology

Volume 10 Issue 2 March 2019 07 ISSN: 2319-6319

Amir Kaivani and Seok-Bum Ko (2015)[3] proposed a floating point fused dot product add unit to improve the

performance of FFT butterfly unit. The proposed design consumes low area at the cost of latency overhead.

Amir Kaivani and SeokbumKo (2015)[4] uses redundant floating point number system in the design of high speed

butterfly architecture. The redundant number representation of the significant and the proposed floating point fused

dot product add unit contributes to the improvement in speed at the cost of higher area.

II. FLOATING POINT FUSED UNITS

The methodology used in IEEE 754 floating point arithmetic units for mantissa computation has major impact that

leads to obvious performance merits with regard to low cost hardware requirements. In many existing works fused

floating point units are employed to increase the execution speed of the butterfly operation. Fused units play a major

role in many DSP applications. Implementation of FFT algorithm using fused unit shows considerable reduction in

power and area when compared with discrete floating point adder followed by multiplier.

The performance of floating point arithmetic is improved by using fused floating point units when compared with

the standard floating point arithmetic units. Fused units play a major role in the implementation of many DSP

algorithms with increased speed, reduced latency, and hardware cost. Two fused floating point units namely Fused

add sub unit (FAS) and Fused dot product unit are used in the design of higher radix FFT algorithm.

2.1. Floating Point Fused Add Sub Unit

The FAS unit computes the sum(X+Y) and the difference(X-Y) simultaneously. To begin with the exponent

compare logic compares the exponents of the two operands to identify the smaller number and also computes the

difference between the two exponents.The exponents of the two operands must be made equal before addition or

subtraction. If the exponent of X is greater than that of Y, then right shift the mantissa of Y by the difference value

of the two exponents.Similarly if the exponent of Y is greater than that of X, then right shift the mantissa of X by the

difference value of the two exponents. By doing so the exponents of the two operands are made equal. Next the sum

of the two operands is computed. Normalization is required if the results lie outside the permitted range. If the result

obtained after adding the two operands is not in the prescribed format, then it has to be rounded. The fused add sub

unit is designed to handle all the four special values and all rounding modes specified by IEEE754 standard.

2.2. Floating Point Fused Dot Product (FDP) Unit

The sum and the difference of the products of two operands is required in the computation of FFT. FDP unit

improves the performance of many DSP algorithms. This unit is of great importance in the multiplication of two

complex numbers.

Let A = are+ aim and B = bre + bim be two complex numbers. Then the product Y = AB is derived as

Y = (are + aim) (bre + bim) = (arebre – aimbim) + j(arebim + bre aim)

The above equation requires two adders and four multipliers when implemented with discrete floating point adders

and multipliers. Alternatively only two fused dot product units are required to implement the equation.

When compared to the conventional dot product unit the fused dot product unit exhibitsconsiderable reduction in

area when compared to the discrete parallel implementation of two multipliers and an adder since a single set of

hardware for exponent adjust and significand shift are shared by both add and subtract operation.

The results obtained are more accurate because only one rounding operation is used instead of three for the

conventional approach. The conventional FDP unit employs a tree based multiplier to multiply the mantissa of the

two operands. This research proposes a multiplier based on CSD format. The proposed CSD based multiplier

increases the possibility of zero partial product to 66.7%. This in turn reduces the power consumed by the multiplier.

Hence the performance of the FDP is improved when compared to the conventional FDP unit, which in turn

improves the overall performance of the FFT. Radix 2, radix 4 and radix 8 FFT algorithms are implemented using

the proposed multiplier.

2.3. CSD Number Representation

Multiplication is an important arithmetic operation involved in DSP applications. Nowadays, all modern engineering

and technology applications prefer floating point in the field of signal processing for scientific computations due to

its high dynamic range when compared with fixed point representation. Hence it is essential to improve the speed of

the floating point multiplier. Conventional array multipliers and parallel are used for high speed multiplication at the

expense of large area. Multiplication involves two steps namely partial product generation and partial product

accumulation. The performance of the multiplier can be improved by reducing the number of partial products

generated and by accelerating the accumulation of partial products. The complexity of the multiplier can be reduced

with smaller number of partial products which in turn reduces the time needed to accumulate the partial products.

International Journal of New Innovations in Engineering and Technology

Volume 10 Issue 2 March 2019 08 ISSN: 2319-6319

Canonical Signed digit recoding is a technique used to reduce the number of partial products. CSD representation

has two main properties 1. Minimum number of non zero digits which results in reduced number of additions. 2. No

two consecutive digits are non zero which facilitates multiple representation for a single binary number.

The basic functional units of a multiplier with CSD representation are CSD recoding unit, 2’s complement unit, shift

control unit and adder unit as shown in Figure1.

Figure 1. Floating point multiplier using CSD

The algorithm to multiply two floating point numbers with CSD representation is

The mantissa of the multiplicand is fed to the 2’s complement unit and the mantissa of the multiplier is fed to the

CSD recoding unit.

The 2’s complement of the multiplicand and the CSD code of the multiplier are fed to the shift control unit. Partial

products are generated by shifting. The number of shifts are based on the sign and position of the non zero digit.

The partial products are then added in the adder unit.

The results are rounded and then normalized to get the final product.

2.4. Fast Fourier Transform (FFT)

Fast Fourier transform is an efficient algorithm used to compute the DFT using Decimation in Time and Decimation

in Frequency algorithms. The basic building block of the Fast Fourier transform algorithm is the butterfly structure.

Figures 3.9 and 3.10 show the basic butterfly structures that define the decimation in time and decimation in

frequency algorithms respectively. Both the algorithms exhibit the same computational complexity but differ in the

arrangement of input and output.

2.5. FFT Factorization

The most popular radix 2 method of computing the FFT algorithm was proposed by Cooley and Turkey. The radix 2

decimation in time and decimation in frequency algorithms is the simplest FFT algorithms. In radix 2 algorithm the

length of the sequence is always expressed in powers of 2. The basic operations involved in radix 2 DIF FFT

butterfly are addition and multiplication. Based on divide and conquer approach many algorithms such as radix 4,

radix 8, and split radix are developed to reduce the computational complexity.

2.6. Radix 4 FFT Algorithm

The computational complexity of radix 2 algorithms can be reduced further by using radix 4 algorithm. Radix 4

algorithm exploits the fact that the multiplication of the input with the twiddle factors especially +j and –j is carried

out without the use of a complex multiplier. In radix 4 algorithm the N point DFT is divided into four N/4 point

DFT. The basic butterfly diagram of radix 4 decimation in frequency FFT is shown in Figure 3.11. The radix 4

International Journal of New Innovations in Engineering and Technology

Volume 10 Issue 2 March 2019 09 ISSN: 2319-6319

butterfly has 4 inputs x(n), x(n+N/4), x(n + N/2), and x(n + 3N/4). The N point DFT is computed as the sum of the

outputs of the four N/4 point DFTs. The four N/4 point DFTs together represent the N point DFT. Radix 4 algorithm

requires only 75% of the complex multiplication utilized in the computation of radix 2 algorithm.

2.7. Radix 8 Algorithm

Radix 8 algorithms further reduce the computational complexity of radix 2 and radix 4 algorithms. The basic

butterfly diagram of radix 8 algorithm has 8 inputs. The radix 8 algorithm rearranges the N point DFT into eight N/8

point DFTs. The output of the N/8 point FFT is reused which greatly reduces the computational complexity of the

algorithm. The output of the butterfly is computed as the sum of the outputs of all the N/8 point DFTs. Figure 3.4

shows the butterfly diagram of radix 8 algorithm.

2.8. Floating Point FFT

An efficient floating point arithmetic model for FFT computation should provide full support in reducing the

hardware complexity and the richness in operating frequency. Bridging the performance gap between fixed point

and floating point model is a big challenge. Though various research has been undertaken, floating point systems

have failed to perform satisfactorily both in terms of speed and energy efficiency. The system is also to focus on

parameter retention of the proposed floating point model over various high speed radix FFT computations.

The generic performance metrics of OFDM system includes both the estimation techniques used and arithmetic

model used for FFT computation. Since floating point models are exploiting higher dynamic ranges and includes

fraction parts for twiddle factors it is capable of providing significant error reduction with any linear MMSE

estimator. Whereas the fixed point model is not adequate for mitigating the channel offset values over higher order

modulation techniques.

Here complexity reduction is achieved with significant improvements in execution speed. The use of fused model

gives unified dot product results required for basic FFT butterfly computation which is used as basic computational

kernel

The results obtained are more accurate because only one rounding operation is used instead of three for the

conventional approach. The conventional FDP unit employs a tree based multiplier to multiply the mantissa of the

two operands. This research proposes a multiplier based on CSD format. The proposed CSD based multiplier

increases the possibility of zero partial products to 66.7%. This in turn reduces the power consumed by the

multiplier. Hence the performance of the FDP is improved when compared with the conventional FDP unit,which in

turn improves the overall performance of the FFT. Radix 2, radix 4 and radix 8 FFT algorithms are implemented

using the proposed multiplier. The results for various FFT radix point are presented to demonstrate the performance

of the approaches.

III. RESULTS AND DISCUSSION

This work analyses the trade off measures of various FFT radix implementations using different FP models. The

proposed CSD based floating point model is implemented using the Verilog HDL and synthesized using ALTERA

Cyclone III EP3C16F484C6 device. The results obtained are tabulated to validate the area and power metrics.

From the results it is proved that the use of CSD with bit normalization is 5% area efficient over FFT with Fused

model and offers 6% reduction in hardware complexity as shown in table 1.

3.1 Radix-4 DIF FFT

From results it is proved that the use of CSD with bit normalization is 6% area efficient over FFT with Fused model

and offers 14% reduction in hardware complexity as shown in table 2.

Table 1. Performance comparison of CSD over fused method using Radix-2 DIF FFT Butterfly Unit.

Method used for

floating point arithmetic

AREA

(LE’s used)

Power

(mW)

Speed

(MHz)

Fused 6807 199.58 70.19

CSD 6454 182.97 73.46

Table 2. Performance comparison of CSD over fused method using Radix-4 DIF FFT Butterfly Unit

Method used for

floating point arithmetic

AREA

(LE’s used)

Power

(mW)

Speed

(MHz)

Fused 4340 94.56 74.56

CSD 4091 92.44 73.8

International Journal of New Innovations in Engineering and Technology

Volume 10 Issue 2 March 2019 010 ISSN: 2319-6319

3.2 Radix-8 DIF FFT

From results it is proved that the use of CSD with bit normalization is 10% area efficient over FFT with Fused

model and offers 16% reduction in hardware complexity as shown in table 3.

Table 3. Performance comparison of CSD over fused method using Radix-8 DIF FFT Butterfly Unit.

Method used for floating

point arithmetic

AREA

(LE’s used)

Power

(mW)

Speed

(MHz)

Fused 3405 93.01 74.76

CSD 3045 88.77 74.93

IV. CONCLUSION

A fused floating point model based Fast Fourier transform with respect to radix-2/4/8 algorithm is proposed. The

efficiency of selective CSD modeling in twiddle factor multiplication gave considerable delay reduction in all the

three types FFT radix algorithms.. Based on the evaluation results simple hardware efficient FP FFT core model was

structured. The results indicate that the CSD driven FP FFT model is able to support high speed computation more

efficiently and also achieve considerable computational complexity reduction.

V. REFERENCES
[1] Ghassemi, A. and Gulliver, T. A. (2007) Finite Word length Design for FFT/IFFT in UWB-OFDM Systems”, Wireless

Telecommunications Symposium, pp. 1 – 7.

[2] Hani Saleh Earl E. Swartzlander, Jr (2008), “A Floating-Point Fused Add-Subtract Unit”, 51st Midwest Symposium on Circuits and

Systems, pp. 519-522.
[3] Amir Kaivani and Seok-Bum Ko (2015), “Area efficient floating-point FFT butterfly architectures based on multi-operand adders”,

Electronics Letters, Vol. 51, No. 12, pp. 895-897.
[4] Amir Kaivani and SeokbumKo (2016), “Floating-Point Butterfly Architecture Based on Binary Signed-Digit Representation”. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 24, No. 3, pp.1208-1211.

[5] Arioua, M. and Hassani, M. M. (2014), “A Low Multiplicative Complexity of Proposed FFT/IFFTs Design Applied for OFDM-Based
Wireless Communication Systems”, Journal of Advances in Computer Networks, Vol. 2, No. 1, pp. 24-27.

[6] Earl E. SwartzlanderJr and Hani H.M. Saleh (2012), “FFT Implementation with Fused Floating - Point Operations”, IEEE Transactions on

Computers, Vol. 61, No. 2, pp. 284-288.
[7] Hani H. Saleh Earl E. SwartzlanderJr (2008), “A Floating-Point Fused Dot-Product Unit”, IEEE 21st Symposium on Computer Arithmetic

pp.427-431.

[8] Huang, L., Shen, L., Dai, K. and Z. Wang (2007), “A new architecture for multiple-precision floating point multiply-add fused unit design”,

in Proc. 18th IEEE Symp. Comput. Arith., pp. 69-76.

[9] Liang, S., Tessier, R. and Mencer, O. (2003), “Floating point unit generation and evaluation for FPGAs”, in Proc. 11th Annu. IEEE Symp.

Field-Program. Custom Comput. Mach., pp. 185-194.
[10] Liou, C. and Chiueh, H. (2008), “An ALU cluster with floating point unit for media streaming architecture with homogeneous processor

cores”, in Proc. IEEE 13th Asia-Pacific Comput. Syst. Arch. Conf., pp. 1–7.

[11] PrasannaPalsodkar Ajay Gurjar (2014), “Improved Fused Floating Point Add-Subtract Unit for FFT Implementation”, International
Conference on Electronics and Communication Systems (ICECS), pp 1-5.

[12] Prasanna Palsodkar1 and Ajay Gurjar (2016), “Fused Floating Point Arithmetic Unit for Radix 2 FFT Implementation”, IOSR Journal of

VLSI and Signal Processing, Vol.6, No.2, pp.58-65.
[13] Ruiz, G.A. and Manzano, M.A. (2001), “Self-timed multiplier based on canonical signed-digit recoding”, IEEE Proceedings – Circuits

Devices Systems, Vol. 148, pp 235-241.

[14] Yunhua Wang (2007), “Iterative Radix-8 Multiplier Structure Based on a Novel Real-time CSD Recoding Signals”, Systems and
Computers, 2007, ACSSC 2007, pp. 977-981.

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7416268
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4483515
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4483515
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4483515

