
International Journal of New Innovations in Engineering and Technology

Volume 10 Issue 1 February 2019 035 ISSN: 2319-6319

Containerization in Cloud Deployment-

Astudy on How this lightweight approach

takesover the traditional Virtualization

Technology

Sagar Lulla
1
, G. SriPradha

2
, Rahul Talreja

3

1
BCA (Mobile Application development & Cloud Computing), Green Valley, Wanwadi, Pune - 411040

2
ResearchScholar, State Resource Centre, Adyar, University of Madras, Chennai –600005

3
Technical Trainer, NIIT China, Qingdao, China.

Abstract - In today’s world, Virtualization technique has enabled us to create useful IT services using resources that are

traditionally bound to hardware. Although Virtualization has its advantages, there are few flaws that a concept like

Containerization looks to resolve. This article, states Containerization as an alternative solution to Virtualization and not

as a replacement since each technology has its own selling points. In this article, we explore the guide to Containerization

that focusses on why do need this technology, its features over Virtual Machines, Microservice Architecture using

Containerization and also some Use Cases.

Keywords -Virtualization, Virtual Machines, Containerization, Containers, Microservice Architecture, Monolithic

Architecture, Kubernetes, Docker Swarm

I. INTRODUCTION

Virtualization has been proven to be an essential tool to sustain the ever-increasing demand for data and services.

Although the concept of Virtualization has been around from many decades, it is only now that we are reaping its

benefits due to the fact the services and data are evidently managed well in terms of resources and also has proven to

be cost effective.

Hardware Virtualization emphasis on virtualizing the underlying hardware resources. Virtualization is a technique

that creates virtual resources like network device, storage devices and compute using emulators known as

Hypervisors. These Virtual Machines are further used for application hosting, website hosting and also providing

various other services for production purposes. In a grand scheme of things, these virtual machines create a lot of

overhead and also scalability issues down the line. For managing a few virtual machines in a production

environment is sustainable, however when if you have a huge number of virtual machines deployed in your

production environment the overhead also increases drastically [1]. Virtual Machines are efficiently inefficient as

sometimes in a production environment the resources are allocated surplus to the requirement just to make the

managing process simpler. Containers were primarily brought into the picture to nullify the weaknesses in virtual

machines namely scalability and better resource management, we will discuss that in detail further. Moreover, these

creations of containers are known as Containerization. Containerization focuses on an operating system level by

abstracting the user spaces, thus creating isolation between the loosely coupled environment which makes it possible

to run packages and applications, also allowing many containers to run simultaneously with having their own set of

resources. In simple terms, containers can depict as a process within a sandbox. There are various benefits of a

container such as enabling the possibility of implementing Microservice architecture. In this article, we will discuss

Use Cases revolving around containers.

II. SYSTEM ARCHITECTURE

2.1 Virtual Machines –

Virtual machine acts like a real computerized environment with all independent resources just like the characteristics

of a real computer. Virtual machine concept derives from the use of hypervisors which are responsible for such

emulation and isolation. These virtual machines are created and run on top of the physical machine using

hypervisors. A hypervisor is a software, firmware that fabricates a platform for guest machines i.e. virtual machines

on top of the host machine i.e. a physical server [2]. These hypervisors act an intermediary between them and

allocate resources from the host to the guest. These guest machines have their own resources such as operating

system, system libraries, network adaptors, storage and more. Furthermore, using the services of guest machines

International Journal of New Innovations in Engineering and Technology

Volume 10 Issue 1 February 2019 036 ISSN: 2319-6319

applications can be hosted. Vendors such as VMware, Oracle and Microsoft have their products for such purposes.

This is represented in Fig.1

Figure 1 - System Architecture

2.2 Containers -

Unlike Virtual machines, containerization works on operating system level abstraction. Here, the resources are

shared by the physical machine, the operating system with some tweaks using the LXC (Linux Containers) [3]. LXC

is an Operating system-level virtualization that permits to inculcate the creation and the ability to operate on isolated

Linux containers. However, Docker an open source project first started as an extension to LXC capabilities,

developed High-level API's which provided a lightweight virtualization solution for running in isolation. Both work

in conjunction as a Docker container does not operate on a separate operating system and acts on the host resources

[4]. However, docker engine plays an important role in packaging tools like namespaces, cgroups, union file system,

various libraries and binaries and any other dependencies that are needed to run the application on any docker

container or on any Linux server [5] [6]. This provides a platform for applications to run in containers.

With constant evolution in docker technology, docker engine is now is not limited to a Linux based solution, it is

also available for mac and windows but has various prerequisites such as toolbox and libraries required to install

docker solution on the desired machine. However, Linux based systems are native and recommended.

Figure 2 – Container Storage Environment

III. WHY CONTAINERS?

Although virtual machines have proved to be an essential part of cloud computing, there are few limitations that

containers overcome.

Scalability- Containers were firstly introduced on the basis that containers scale up and down at ease and at a

tremendous rate. In virtual machines, the scalability takes a huge amount of time to deploy the resources, whereas in

containers it’s just matter of seconds. Scalability is a core aspect for containers as the workload is distributed into a

cluster of containers [7]. Scaling in largely achieved by Cluster Manager tools such as Docker Swarm by Dockers

and Kubernetes by Google for containers. This cluster management framework provides not only clustering of

containers but also scheduling and integration facilities that help developers build and deploy multi-container

environment [8].

Better Utilization of resources - Virtual machines are were created to ensure the total utilization of resources is

achieved by providing limited or sufficient amount of resources. Despite of such measures, there is still

International Journal of New Innovations in Engineering and Technology

Volume 10 Issue 1 February 2019 037 ISSN: 2319-6319

underutilization of those allocated resources. So here containers come into the picture as deployment of containers,

there is no need to establish/allot resources. It is dynamically achieved that is at runtime of a container, the container

picks up the required amount of resources not more not less just like a process would function.

Start-up time - Deployment of virtual machines although is now scripted in plenty of scenarios, surely had removed

the human efforts, however the actual time to deploy, boot up the operating system, run all the tests and also planned

and unplanned events every time faces a lot of downtime. Using containers this aspect can be resolved as containers

are very lightweight and act like a process running on the kernel. Containers can be deployed and are up and running

within seconds, so that is a dramatic difference.

Integration - Integration in virtual machines can have multiple services such as Jenkins puppet and Ansible Nagios

running on multiple virtual machines which brings a lot of scalability issues, infrastructure and more importantly

cost goes considerably higher. Using containers these services can run on the same container itself, different

containers that have the capability of interacting with one another and also can scale up copies of these services into

multiple containers.

Performance - Virtual machines have a big amount of overhead in terms of deployments, operating system tests, and

booting up time, duplication platform software for every instance of an application. Wherein, most of that is

eliminated as containers share the same operating system, and other resources such as kernel, memory and network

capabilities. As mentioned earlier containers can be deployed within seconds. This saves a lot of time and thereby

increases the performance and overall throughput.

This has been summarized in the table given below:

Table-1Virtual Machine VS Container

FEATURE VIRTUAL MACHINE CONTAINERS

Computing Architecture Monolithic architecture Microservice architecture

Virtualization Management Hypervisor usually hardware

virtualization

Container engine works on

operating system

Load Balancing CLOUD SERVICE PROVIDER

(CSP) eg: AZURE, AWS, GCP

CLUSTER MANAGEMENT

SERVICES eg: KUBERNETES,

DOCKER SWARM

Service Iaas, paas, saas Iaas, paas, saas

Fault Tolerance CLOUD SERVICE PROVIDER

(CSP) eg: AZURE, AWS, GCP

CLUSTER MANAGEMENT

SERVICES eg: KUBERNETES,

DOCKER SWARM

Storage Provided by cloud service provider

(csp)

Host machine

Security Entire os is emulated and thereby

offering data security and

protection

Sharing os requires root access

which may lead to vulnerability

Overhead Deployment time increases as

number of resources increases

Deployment time significantly

decreases as commands are

executed within seconds

Scalability OPERATION EXECUTED BY

CLOUD SERVICE PROVIDER

(CSP) eg: AZURE, AWS, GCP

OPERATION EXECUTED BY

CLUSTER MANAGEMENT

SERVICES eg: KUBERNETES,

DOCKER SWARM

IV. MICROSERVICE ARCHITECTURE

Microservice Architecture framework was adopted due to scenarios such as the inability to scale, unreliable,

inflexible, blocks continuous development, the complexity of existing service model, comparatively high scalable

costs, slow development, risk of any failure in any of tiers of the application may lead to failure of the total system.

Such are the drawbacks of Monolithic Architecture framework. Microservice architecture overcomes these

limitations. Microservice architecture is a cloud-native based framework which has gained popularity and widely

accepted in the DevOps field. In Microservice architecture the application’s system is divided into small and

lightweight services that are independent and can communicate with each other using RESTful or RPC-based API’s

[9]. This not only helps in terms of flexibility and scalability but also reduces the risk of failure of a single point

source. If one tier fails it is sure that it would not affect the functionality of other tiers and application as a whole in

an unplanned scenario.

International Journal of New Innovations in Engineering and Technology

Volume 10 Issue 1 February 2019 038 ISSN: 2319-6319

For docker containers, the Microservice service model can be implemented by the use of Cluster Management tools

such as Kubernetes by Google and Docker Swarm by Docker. These two are perhaps the most popular ones and

rightly so as they manage the containers and their connections in a cluster. In a production environment, either of

those tools is implemented to achieve reusable images and data.

V. USE CASE

Uber is a well-known transportation network company based in the United States of America. They provide their

services worldwide and are currently one of the best in their field of business.

However, they too started their journey with a monolithic based architecture. Having one system to provide the

capability for drivers, customers, billing and payment seemed satisfactory that point of time. The system was

rudimentary in terms of functionality. With the use of REST API, Adapters the communication was taken place with

their servers and database. Their functionality such as driver management, customer database, notification

management, billing and payment and more were all dependant on each other immensely.

Furthermore, with the rapid expansion of the company in different geographical regions and problems of driver

management and customer searches connectivity, the company continuously faced problems of connectivity,

integration, and scalability. Not only that but also the application upgrades and fixing bugs were slow and difficult

handle.

Later Uber decided to follow the footsteps of Amazon, Netflix, SoundCloud and various other companies who

implemented Microservice architecture as their service model. An API gateway was established which solved the

problem for customer searches and driver connectivity. Also, this was applicable for their entire system, where each

and every functionality of application was broken down to a microservice and the connectivity between each

microservice remained intact with the help of REST API and the API gateway. The API gateway gets automatically

connected to each and every microservice. This enabled developers to deploy quick upgrades and patches and this

also enabled developers to deploy any changes to the desired microservice without affecting the other running

microservices [10]. This led to rapid scalability and efficient management of each resource.

VI. CONCLUSION

The purpose of this article is to view Containers as an alternative solution to virtual machines as the advantages are

comparatively greater than the drawbacks. Not only that but also it acts a reliable option and has nullified the

drawbacks of a virtual machine. Containers in recent years have surpassed its expectations and have already solved

so many problems that an organization faces. That being said, there are some limitations to this technology such as

security, having a common Operating System used throughout the deployment and maintaining phase, having to

face a challenge of running an embedded based application where virtual machine clearly is very capable at and

lastly the requirement to run various different applications on various software platform where virtual machines

have a clear edge over containers. Both technologies have their own specialty and excel on various fronts. Also,

Microservice Architecture is the way to go into the future depending on the situation of an organization.

Microservice Architecture helps DevOps to fully showcase their skillsets by providing a constant improvement to

the system.

VII. REFERENCES
[1] Comparative Study of Virtual Machines and Containers for DevOps Developers Instructor: Prof. Richard Martin Sumit Maheshwari,

Saurabh Deochake, Ridip De, Anish Grover, 2015.
[2] Performance comparison of a WebRTC server on Docker versus Virtual Machine: Cristian Constantin Spoiala, Alin Calinciuc, Corneliu

Octavian Turcu, Constantin Filote, 2016.

[3] Docker vs LXC by Mike Baukes, 2017: https://www.upguard.com/articles/docker-vs-lxc
[4] Containers and Cloud: From LXC to Docker to Kubernetes by CLOUD TIDBITS, 2017.

[5] Comparing Containers versus Virtual Machines for Achieving High Availability Wubin Li and Ali Kanso, 2016.

[6] Medium source blog by Preethi Kasireddy: https://medium.freecodecamp.org/a-beginner-friendly-introduction-to-containers-vms-and-
docker-79a9e3e119b, 2016.

[7] An Updated Performance Comparison of Virtual Machines and Linux Containers Wes Felter Alexandre Ferreira Ram Rajamony Juan

Rubio, 2014.
[8] Scaling containers by David Linthicum Chief Cloud Strategy Officer, Deloitte Consulting, 2018. https://techbeacon.com/scaling-containers-

essential-guide-container-clusters.

[9] A Systematic Mapping Study in Microservice Architecture by Nuha Alshuqayran, Nour Ali and Roger Evans, 2016.
[10] Microservices Architecture Enables DevOps: An Experience Report on Migration to a Cloud-Native Architecture by Armin Balalaie Abbas

Heydarnoori, Pooyan Jamshidi, 2017.

https://www.upguard.com/articles/docker-vs-lxc
https://medium.freecodecamp.org/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b
https://medium.freecodecamp.org/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b
https://techbeacon.com/scaling-containers-essential-guide-container-clusters
https://techbeacon.com/scaling-containers-essential-guide-container-clusters

