New Types of semi-open sets

V. Amsaveni¹, M.Anitha², A.Subramanian³ ¹Dept.of Mathematics, Dr.G.U.Pope College of Education, Sawyerpuram, TamilNadu, India. Research Scholar in Mathematics, PG & Research Department of Mathematics, The M.D.T. Hindu College, Affliated to Manonmaniam Sundaranar University, Tirunelveli, India. ²Dept. of Mathematics, Rani Anna Govt. College, Tirunelveli -8, TamilNadu, India. Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India ³Dept. of Mathematics, The M.D.T.Hindu College, Tirunelveli, TamilNadu, India, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, India

Abstract- Velicko investigated the concepts of θ -open and δ -open sets. Stone studied the concepts of regular open sets and Levine introduced the concept of semi-open sets. In this paper several versions of semi-open sets have been introduced by mixing the concepts of θ -Open sets, δ -open sets and regular open sets and their basic properties have been discussed. Keywords: semi-open sets, θ -open sets, δ -open sets, regular space, semi-regular space. 2010 AMS Subject Classification: 54A05, 54A10.

The notions of θ -open sets and δ -open sets were studied by Velicko[6]. Levine[3] discussed the concept of semi-open sets to analyze the functions weaker than continuous functions. In this paper, new types of semi-open sets have been introduced by using the concepts of θ -open sets and δ -open sets.

I. PRELIMINARIES

Throughout this paper (X, τ) is a topological space and S is a subset of X. The interior and closure of a subset S of X with respect to the topology τ are denoted by IntS and CIS respectively. S is regular open [5] if S=Int Cl S and is regular closed if S=Cl IntS. Let RO(X, τ) denote the collection of all regular open sets in (X, τ). Since the union of regular open sets is not regular open, $RO(X,\tau)$ is not topology on X. However, since the intersection of two regular open sets is regular open, RO(X, τ) is a base for some topology on X. This topology is denoted by $\tau\delta$ and the members of $\tau\delta$ are called δ -open sets in (X, τ). Clearly S is δ -open iff for all $x \in S$ there exists a closed set F with x \in IntF \subset S. That is every δ -open set is a union of regular open sets. The topology $\tau\delta$ is called the semiregularization of τ . Clearly RO(X, τ) $\subseteq \tau \delta \subseteq \tau$. Velicko defined the θ -closure operator in a topological space (X, τ). An element x in X is in θ -closure of a subset A of X, denoted by $x \in \theta ClA$ if for every open set U containing x, $ClU \cap A \neq \emptyset$. The θ -interior operator can be defined as $\theta IntA = X \setminus \theta Cl(X \setminus A)$. The subset A of X is θ -closed if A = θ ClA and is θ -open if A = θ IntA. Clearly A is θ -open if and only if X\A is θ -closed. In fact S is θ -open if for all $x \in S$ there exists an open set U with $x \in U \subset C | U \subset S$. The collection of all θ -open sets in (X, τ) is a topology on X. denoted $\tau \theta$. It is noteworthy to see that $\tau \theta \underline{\neg} \tau \delta \underline{\neg} \tau$. Mila Mrsevic and Andrijevic [2] concluded that the operator θ Cl is not idempotent that is θ Cl(θ ClA) $\neq \theta$ ClA. A subset S of X is semi-open [3] if S \subset ClIntS and is semi-closed if $S \supseteq CIIntS$. In the next two sections, the new versions of sem-iopen sets have been introduced by using the operators namely Int δA , Cl δA , Int θA and Cl θA which respectively denote the δ -interior, δ -closure, the θ -interior and θ closure of A in (X, τ) . The following definitions and results will be useful in sequel. Definition 1.1: A space (X, τ) is

(i).regular if for every x in X and for every open set V containing x there exists an open set U such that $x \in U \subseteq ClU \subseteq V$.

(ii).almost regular [4] if for every x in X and for every open set V containing x there exists an open set U such that $x \in U \subseteq ClU \subseteq IntClV$.

The next lemma has been established in [4].

Lemma 1.2: A topological space (X,τ) is (i) regular if and only if $\tau \theta = \tau$; (ii) semi-regular if and only if $\tau \delta = \tau$ and (iii) almost regular if and only if $\tau \theta = \tau \delta$.

The following definition is due to the authors [1].

Definition 1.3:A subset A of a space (X, τ) is

(i). regular θ -open (resp. regular θ -closed) in (X, τ) if A= Int θ Cl θ A (resp. A= Cl θ Int θ A).

(ii). regular δ -open (resp. regular δ -closed) in (X, τ) if A= Int δ Cl δ A (resp. A= Cl δ Int δ A).

(i). regular θ^* -open (resp. regular θ^* -closed) in (X, τ) if A= Int θ ClA (resp. A= Cl θ IntA).

(ii). regular δ^* -open (resp. regular δ^* -closed) in (X, τ) if A= Int δ ClA (resp. A= Cl δ IntA).

II. SEMI $\theta\text{-}OPEN$ SETS AND SEMI $\theta^*\text{-}OPEN$ SETS

In this section, the notions of semi θ -open, semi θ -closed, semi θ *-open and semi θ -closed sets are introduced and studied. Before this, θ -open and θ -closed are characterized in the following proposition by using semi-open sets. Proposition 2.1: A subset A of a space (X, τ) is

(i). θ -open iff for all $x \in A$ there exists a semi-open set U with $x \in Int U \subseteq Cl U \subseteq A$.

(ii). θ -closed iff for all $x \notin A$ there exists a semi-closed set F with A Int F Cl F and $x \notin Cl$ F.

Proof: The necessary part of (i) follows easily from the definition of a θ -open as every open set is semi-open. Let A be subset of X. Suppose for all $x \in A$ there exists a semi-open set U with $x \in IntU \subseteq ClU \subseteq A$. Since IntU is an open set and since $x \in IntU \subseteq ClU \subseteq A$ it follows that A is θ -open. This proves (i). Now suppose A is θ -closed. Then X\A is θ -open. Then for all $x \in X \setminus A$ there exists a semi-open set U with $x \in IntU \subseteq ClU \subseteq X \setminus A$ that is

 $A \subseteq X \setminus CIU \subseteq X \setminus U \subseteq X \setminus IntU = CI(X \setminus U)$ that implies $A \subseteq IntF \subseteq CIF$ and $x \notin CIF$ where $F = X \setminus U$ which is semiclosed. Conversely let for all $x \notin A$ there exists a semi-closed set F with $A \subseteq IntF \subseteq CIF$ and $x \notin CIF$. If $x \in X \setminus A$ then there exists a semi-closed set F with $A \subseteq IntF \subseteq CIF$ and $x \notin CIF$. If $x \in X \setminus A$ then there exists a semi-closed set F with $A \subseteq IntF \subseteq CIF$ and $x \notin CIF$ that implies $x \in X \setminus CIF \subseteq X \setminus F \subseteq X \setminus A$ that is $x \in Int(X \setminus F) \subseteq X \setminus F \subseteq CI(X \setminus F) \subseteq X \setminus A$ which further implies by(i) that $X \setminus A$ is θ -open. Therefore A is θ -closed. This

Definition 2.2: A subset A of X

(i). is semi θ -open (resp. semi θ *-open) in (X, τ) if A \subseteq Cl θ Int θ A (resp. A \subseteq Cl θ Int A). (ii). is semi θ -closed (resp. semi θ *-closed) in (X, τ) if A \supset Int θ Cl θ A (resp. A \supset Int θ Cl A)

Proposition 2.3: A is semi θ -open in (X, τ) if and only if A is semi-open in $(X, \tau\theta)$ Proof: Follows from the fact that $(X, \tau\theta)$ is a topological space.

Remark 2.4: Since $\tau\theta$ is a topology on X, all the properties of semi-open sets in (X,τ) also hold for semi θ -open sets in (X,τ) as seen in the next three propositions.

Proposition 2.5:

proves (ii).

(i).If A is regular θ -open (resp. θ -open) then it is semi θ -closed(resp. semi θ -open). (ii).If A is regular θ -closed (resp. θ -closed) then it is semi θ -open(resp. semi θ -closed)

Proposition 2.6:

(i).If A is semi-open or semi θ -open or regular θ^* -closed in (X,τ) then it is semi θ^* -open . (ii).If A is semi-closed or semi θ -closed or regular θ^* -open in (X,τ) then it is semi θ^* -closed.

Proposition 2.7: (i).If A is semi θ^* -open then it is contained in a regular θ^* -closed set. (ii).If A is semi θ^* - closed then it is contained in a regular θ^* -set.

III. SEMI $\delta\text{-}OPEN$ SETS $\mbox{ AND SEMI }\delta^{*}\text{-}OPEN$ SETS

In this section , semi δ -open sets and semi δ^* -open sets are introduced and studied. Before this , δ -open and δ -closed sets are characterized in the next proposition by using semi-open sets.

Proposition 3.1: A subset A of a space (X, τ) is

(i). &-open iff for all $x \in A$ there exists a semi-closed set F with $\ x \in Int \ F \subseteq A$

(ii). δ -closed iff for all $x \notin A$ there exists an open U with $A \subseteq Cl U$ and $x \notin Cl U$.

Proof: The necessary parts of (i) follows easily from the definition of a δ -open as every closed set is semi-closed. Suppose for all $x \in A$ there exists a semi-closed set F with $x \in Int F \subseteq A$. If $x \in A$ then there exists a semi-closed set F with $x \in Int F \subseteq A$ that implies $x \in Int F = Int sCl F \subseteq Int ClF \subseteq A$ that further implies that $x \in Int B \subseteq A$ where B = ClF is closed. Therefore A is δ -open. This proves (i). Now suppose A is δ -closed. Then X\A is δ -open. Then for $x \in X \setminus A$ there exists a closed set F with $x \in Int F \subseteq X \setminus A$ that is $A \subseteq Cl U$ and $x \notin ClU$ where $U = X \setminus F$ which is open. Conversely let for all $x \notin A$ there exists an open set U with $A \subseteq ClU$ and $x \notin ClU$. If $x \in X \setminus A$ then there exists an open set U with A ClU and $x \notin ClU$ that implies $x \in X \setminus ClU X \setminus A$ that is $x \in Int (X \setminus U) \subseteq X \setminus A$ which further implies by (i) that $X \setminus A$ is δ -open. Therefore A is δ -closed. This proves (ii). Definition 3.2: A subset A of a space (X, τ) is

(i).semi δ -open (resp semi δ^* -open) in (X, τ) if A_Cl\deltaIntA (resp. A_Cl\deltaIntA) and

(ii). semi δ -closed (resp semi δ^* -closed)in (X, τ) if A \supseteq Int δ Cl δ A (resp. A \supseteq Int δ ClA).

Proposition 3.3: A is semi δ -open (resp. semi δ -closed) in (X,τ) if and only if A is semi-open (resp. semi-closed) in $(X,\tau\delta)$.

Proof: Follows from the fact that $(X,\tau\delta)$ is a topological space.

Remark 3.4: Since $\tau\delta$ is a topology on X, all the properties of semi-open sets in (X,τ) also hold for semi δ -open sets in (X,τ) as seen in the next three propositions

Proposition 3.5:

(i).If A is regular δ -open (resp. δ -open) then it is semi δ -closed (resp. semi δ -open). (ii).If A is regular δ -closed (resp. δ -closed) then it is semi δ -open(resp. semi δ -closed).

Proposition 3.6:

(i).If A is semi-open or semi δ -open or regular δ^* -closed in (X, τ) then it is semi δ^* -open. (ii).If A is semi-closed or semi δ -closed or regular δ^* -open in (X, τ) then it is semi δ^* -closed.

Proposition 3.7:

(i).If A is semi δ -open (resp. semi δ^* -open) then it is contained in a regular δ -closed (resp. regular δ^* -closed)set. (ii).If A is semi δ -closed (resp. semi δ^* - closed) then it is contained in a regular δ - open (resp. regular δ^* - open) set.

4. Some common properties

Proposition 4.1:

(i). A is semi θ -open (resp. semi θ *-open) iff X\A is semi θ -closed (resp. semi θ *-closed)

(ii). A is semi δ -open (resp. semi δ *-open) iff X\A is semi δ -closed (resp. semi δ *-closed)

Proposition 4.2:

(i) The intersection of two semi θ -open (resp. semi δ -open, resp. semi θ^* -open, resp. semi δ^* -open)sets in (X,τ) is not semi θ -open (resp. semi δ -open, resp. semi θ^* -open, resp. semi δ^* -open) in (X,τ) .

(ii) The union of two semi θ -closed (resp. semi δ -closed, resp. semi θ *-closed, resp. semi δ *-closed)sets in (X, τ) is not semi θ -closed (resp. semi δ -closed, resp. semi θ *-closed, resp. semi δ *-closed) in (X, τ).

(iii) The intersection of two semi θ -closed (resp. semi δ -closed, resp. semi θ^* -closed, resp. semi δ^* -closed)sets in (X, τ) is semi θ - closed (resp. semi δ -closed, resp. semi δ^* -closed) in (X, τ).

(iv) The union of two semi θ -open (resp. semi δ -open, resp. semi θ *-open, resp. semi δ *-open)sets in (X, τ) is semi θ - open (resp. semi δ -open, resp. semi δ *-open) in (X, τ)

The next three theorems follow from Lemma 1.2.

Theorem 4.3: In an almost regular space

(i). A is semi θ -open iff it is semi δ -open,

(ii). A is semi θ^* -open iff it is semi δ^* -open,

(iii). A is semi θ -closed iff it is semi δ -closed,

(iv). A is semi θ^* -closed iff it is semi δ^* -closed,

Theorem 4.4: In a semi-regular space (i).A is semi-open iff it is semi δ-open, (ii).A is semi-closed iff it is semi δ-closed,

Theorem 4.5: In a regular space the following are equivalent. (i).A is semi-open

(ii). A is semi δ-open (iii). A is semi δ^* -open (ii). A is semi θ-open (iii). A is semi θ^* -open

IV. CONCLUSION:

The existing concepts that are related to θ -open and δ -open sets have been characterized in regular, semi-regular and almost regular spaces by the new notions such as semi θ -open, semi θ -open, semi δ -open and semi δ *-open sets.

V. REFERENCES

- [1] V. Amsaveni, M.Anitha and A.Subramanian, "Weak and strong forms of regular open sets", (submitted).
- [1] V. Amsaven, M. Andri and A. Subramanan, Weak and strong forms of regular open sets , (submitted).
 [2] Mila Mrsevic, D.Andrijevic, "On θ-connectedness and θ-closure spaces", Topology and its Applications, vol.123, pp.157-166, 2002.
 [3] Norman Levine, "Semi open sets and semi continuity in topological spaces", Amer. Math. Monthly, vol.70, pp.36-41, 1963.
 [4] T.G.Raghavan, "θ-closed subsets of topological spaces", Indian J. pure. appl. Math. vol.15, no.3, pp. 233, 1984.

- [5] M.H.Stone, "Application of the theory of Boolean rings to general topology", Trans. Amer.Math. Soc., vol. 41, pp. 374-481, 1937.
- [6] N.V.Velicko, "H-closed topological spaces", Amer. Math. Soc. Trans. Vol.78, no.2, pp.103-118, 1968.