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Abstract- In 1981 H. Kizmaz  defined the difference sequence spaces for  crisp set and in 2007 Sahiner et al. 

was first introduced the idea of triple sequence spaces. In this article, we introduce the classes of fuzzy real-

valued multiple sequences 
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 where nlkpp 
 is a triple sequence of bounded strictly positive numbers. We study 

different topological properties of these spaces like completeness, solid, monotone, symmetricity convergence 

free etc. We prove some inclusion results also.    
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I. Introduction 

In 1965 Zadeh [32] introduced the concepts of fuzzy sets and fuzzy set operations and subsequently several 

authors have discussed various aspects of the theory and applications of fuzzy sets.  Fuzzy set theory, compared 

to other mathematical theories, is perhaps the most easily adaptable theory to practice. Instead of defining an 

entity in calculus by assuming that its role is exactly known, we can use fuzzy sets to define the same entity by 

allowing possible deviations and inexactness in its role. This representation suits well the uncertainties 

encountered in practical life, which make fuzzy sets a valuable mathematical tool. In fact the fuzzy set theory 

has become an area of active area of research in science and engineering for the last 40 years. Fuzzy set theory 

is a powerful hand set for modelling uncertainty and vagueness in various problems arising in the field of 

science and engineering. It extends the scope and results of classical mathematical analysis by applying fuzzy 

logic to conventional mathematical objects, such as functions, sequences and series etc. The ideas of fuzzy set 

theory have been used widely not only in many engineering applications, such as, computer programming [11], 

population dynamics [3], quantum physics [20], control of chaos [10], bifurcation of non-linear dynamical 

system [13], approximation theory [2] etc., but also in various branches of mathematics, such as, theory of 

metric and topological spaces [8], theory of linear systems [22], studies of convergence of sequences of 

functions [4,14]. While studying fuzzy topological spaces, we face many situations where we need to deal with 

convergence of fuzzy numbers.  

Using the idea of fuzzy real numbers, different types of fuzzy real-valued sequence spaces have been introduced 

and studied by several mathematicians. The initial works on double sequences of real or complex terms are 

found in Bromwich [5]. Hardy [12] introduced the notion of regular convergence for double sequences of real or 

complex terms. Agnew [1] studied the summability theory of multiple sequences and obtained certain theorems 

which have already been proved for double sequences by the author himself. Móricz [21] extended statistical 

convergence from single to multiple real sequences and obtained some results for real double sequences. 

Şahiner et. al. [24] developed statistical convergence for triple sequences of real numbers. A. J. Dutta et al.[7], 

P. Kumar et al.[18],  E. Savas and A. Esi [26], are a few to be named those who have introduced different types 

of triple sequence spaces. 
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II. Definitions and background 

Throughout the article N and R denote the sets of natural, and real numbers respectively and ,,, 0ccw
 denote 

the spaces of all, convergent, null and bounded sequences respectively. 

A fuzzy real number X is a fuzzy set on R , i.e. a mapping X : R  → L (= [0, 1] ) associating each real number 

t  with its grade of membership X (t).   Every real number r can be expressed as a fuzzy real number r  as 

follows:  

r  (t) =

 

otherwise

rtif

0

1

 

The -level set of a fuzzy real number X , 0 <   ≤ 1 denoted by  
][X

 
 
is defined  as     

}.)(:{][   tXRtX
 

A fuzzy real number X  is called  convex if 
 )()()( rXsXtX

 min
)),(),(( rXsX

 where .rts   If 

there exists  
Rt 0  such that 

,1)( 0 tX
 then the fuzzy real number  X  is called normal. A fuzzy real 

number X is said to be upper semi-continuous if for each 
,0
 

)),,0[1  aX
 for all La  is open in the 

usual topology of R. The set of all upper semi continuous, normal, convex fuzzy number is denoted by R(L).  

Let D be the set of all closed bounded intervals 
 RL XXX ,

 on the real line R. Then YX  if and only if 

LL YX   and  .RR YX    

Also let 
 ). | Y-| , | -| (max     ),( RLRL YXXYXd 

Then 
),( dD

 is a complete metric space.                                        

Let 
RLRLRd  )()(:

 be defined by 
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10
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Then d defines a metric on 
)(LR

 and 
 dLR ),(

 is a complete metric space.      

In order to generalize the notion of convergence of real sequences, Kostyrko, Šalát and Wilczyński [18] 

introduced the idea of Ideal convergence for single sequences in 2000-2001. Later on it was further developed 

by Šalát et. al. [26], Das et. al. [6], Tripathy and Tripathy [30], Tripathy and Sen [29], Kumar and Kumar [19], 

Sen and Roy [27] and many others. 

Let X be a non empty set. A non-void class 
XI 2  (power set of X) is said to be an ideal if I is additive and 

hereditary, i.e. if I satisfies the following conditions: 

(i)  
IBAIBA  ,

  and  (ii) .     IBABandIA   

A non-empty family of sets 
XF 2 is said to be a filter on X  if  

(i)   F   

(ii) A, B  F  A  B  F  

(iii)  A  F and A  B  B F.  
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For any ideal I, there is a filter F(I)  given by   

}. \ : {)( IKNNKIF 
 

An ideal 
XI 2  is said to be non-trivial if I   and X  I.   

A subset E of N is said to have density 
)(E

 if 

)(
1

 lim)(
1

k
n

E
n

k

E
n





 

 exists.            

The details about the ideals of 
NN2 are introduced and investigated by Tripathy and Tripathy [29]. Throughout 

the article, the ideals of 
NNN 2  will be denoted by 

.3I
        .             

Example 1. Let 
NNNI  2)(3 

 i.e. the class of all subsets of NNN  of zero natural density. Then 

)(3 I
 is an ideal of 

NNN 2 .  

Throughout 

RFRFFFFF ccccw )(,)( ),( ),( ),(),( 03303333   denote the spaces of all, bounded, 

convergent in Pringsheim’s sense, null in Pringsheim’s sense, regularly convergent and regularly null fuzzy real 

valued triple sequences respectively.  

A triple sequence can be defined as a function 
).(: CRNNNx 

                                                                                                                                                                               

A fuzzy real valued triple sequence nlkXX 
 is a triple infinite array of fuzzy real numbers nlkX

 for all 

Nkln , , 
 and is denoted by nklX

 where
).(  LRX nlk    

A fuzzy real-valued triple sequence nlkXX 
 is said to be 3I

-convergent to the fuzzy number 
,0X

 if for all 

,0
 the set 

  .} ),(:),,{( 30 IXXdNNNkln nlk  
We write 

.  lim 03 XXI nlk 
                   

A fuzzy real-valued triple sequence nlkXX 
 is said to be 3I

-bounded if there exists a real number 


 such 

that the set 
.})0,(:),,{( 3IXdNNNkln nlk  

                                                                                                     

A fuzzy real-valued triple sequence space 
FE  is said to be solid if 

F

nlk EY 
whenever nlknlk XY 

  for all  

Nkln ,,
and 

.F

nlk EX 
.  

A fuzzy real-valued triple sequence space 
FE  is said to be monotone if 

FE  contains the canonical pre-image of 

all its step spaces.   

A fuzzy real-valued triple sequence 
FE is said to be symmetric if S(X) 

FE , for all X
FE , where S(X) 

denotes the set of all permutations of the elements of nlkXX 
 

A fuzzy real-valued triple sequence space
FE  is said to be sequence algebra if 

,F

nlknlk EYX 
 whenever 

., F

nlknlk EYX 
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A fuzzy real-valued triple sequence space 
FE  is said to be convergence free if 

F

nlk EY 
whenever 

.F

nlk EX 
 and 

0nlkX
 implies  

.0nlkY
 

In 1981, H. Kizmaz [16 ] the difference sequence spaces for crisp set and studied the spaces 

      0,, ccl
. Later on Seva [ ]  introduced the notion of difference sequences for fuzzy real numbers 

a studied different properties of the spaces. In 2006, this concept was further generalised by Tripathy and Esi [ 

31] as 
      ZxwxZ kmkm  :

 where 0m be an integer and  lccZ ,, 0 and 

mkkkm xxx 
 for all Nk . Thereafter Tripathy and B. A. Baruah introduced the difference 

sequences of fuzzy real numbers L. we introduced the following for triple sequence:  
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Let nklpp 
 be a triple sequence of bounded strictly positive numbers. We introduce the following triple 

sequence spaces:  
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Then 
).)(( )(

3 pm

F   is a complete metric space with respect to the metric 


 defined by  
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For particular values of p and ideal I,  these sequence spaces reduce to many well known sequence spaces.             

Let nlkX
 and nlkY

 be two fuzzy real valued triple sequences. Then we say that nlknlk YX 
 for almost all 

n, l and k relative to 3I
(in short a.a. n, l & k r 3I

) if the set 

.}:),,{( 3IYXNNNkln nlknlk 
 

Note. Let nklpp 
 be a triple sequence of bounded strictly positive numbers and    

 nlkpH sup 

. Then for sequences nkla
and nklb

of complex numbers, we have the following 

inequality: 

),(
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We procure the following existing result.       

Lemma 1. If a sequence space 
FE  is solid, then it is monotone.       

For the crisp set case, one may refer to Kamthan and Gupta [15], p.53.  

III. MAIN Result 

Theorem 1. The following statements are equivalent: 

 (i)  
).,)(( )(

3 pcX m

FI

nlk 
     

 (ii)  There exists a sequence 
),)(( 3 pcY m

F
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such that 
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.           

 (iii)  There exists a subset 
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 of NNN   such that                       
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Proof.  (i)  (ii).  Let 
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FI
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)(0 LRX 
 such that   

  .0 ) , (  lim 03 
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nlkm XXdI
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So for any 
,0

 we have the set    
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(iii)  (i)    From (iii), (i) follows immediately. 

Theorem  2.  If 

,sup 
,,

 nlk
kln

pH
 then the classes of sequences 

),,()( )(

3 pc m

BPFI 
  

),()( )(

03 pc m

BPFI 
 

),()( )(

3 pc m

BRFI 
and 

),()( )(

03 pc m

BRFI 
are complete metric spaces with respect 

to the metric    defined by  

,)],([ sup),(
,,

M

p

nlkmnlkm
kln

nlk

YXdYX 
 where 

).,1( max HM 
 

Proof.  Let us consider the space 
).,()( )(

3 pc m

BPFI 
 

Let 

)(iX
 be a Cauchy sequence in 

),,)(( ),()( )(

3

)(

3 ppc m

F

m

BPFI    where 
.. 

)()( i

nlk

i XX 
  

Since 
),)(( )(

3 pm

F   is complete, so there exists 
),)(( )(

3 pX m

F    such that    

,lim )( XX i

i


  where 
.nlkXX 
 

We claim that 
).()( )(

3 pcX BPFI
 

Since 

)(iX
 is Cauchy, so for a given 

,10  
 there exists 

Nn 0  such that 

  ,
3

 ,  )()( 
 ji XX

 for all  
. , 0nji 
 


  ,

3
 ) , (

)(

m

)( 
 M

p
j

nlk

i

nlkm

nlk

XXd
 for all  

. , 0nji 
 

,
3

) , (   
)(

m

)( nlkp

M

j

nlk

i

nlkm XXd 











 for all  
. , 0nji 
 

Again since  
),,()(  , )(

3

)()( pcXX m

BPFIji 
  so there exists fuzzy numbers  iY

 and jY
  such that the sets  

  )( 
3

) , (:), , ( 3

)(
IFYXdNNNklnA

M
p

i

i

nlkm

nlk


























  

             And 

  

  )( 
3

) , (:), , ( 3

)(
IFYXdNNNklnB

M
p

j

j

nlkm

nlk


























 

Then 
).( 3IFBA 

   Let 
.), , ( BAkln 
         

Then   
) , () , () , () , (

)()(

m

)()(

m j

j

nlkm

j

nlk

i

nlkm

i

nlkiji YXdXXdXYdYYd 
 



International Journal of  New Innovations in Engineering and Technology 

Volume 9 Issue 2 – November 2018 44  ISSN: 2319-6319 

,
 for all  
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Hence  nlkm X
 is I-convergent to Y. 

This implies that  
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 is complete. 

Using similar technique the other cases can be established. 

Theorem 3. The classes of sequences 
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Proof. – We consider the space 
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Also by Lemma 1.  it follows that  the classes of sequences under consideration are monotone Using similar 

technique the other cases can be established..                                              ■                                                                

Theorem 5. The classes of sequences 
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Proof. The result follows from the following example.                                                                                                                                                                                                                 

Example 1.   Let 3IA
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We consider the sequence nlkX
 defined by:      

For all 
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International Journal of  New Innovations in Engineering and Technology 

Volume 9 Issue 2 – November 2018 46  ISSN: 2319-6319 

                        
)(tX nlk  

   

otherwise                            ,0 

3

1
0 for    ,31 

0
3

1
for     ,31 

  



















nlk
tnlkt

t
nlk

nlkt

     

otherwise  
. 0nlkX

  

Let m = 3, then we have 

 )(3 tX nlk

   
       

   
       

   

otherwise                            ,0 

3333

1

3

1
0 for    ,

2793

3333
1 

0
3333

1

3

1
for     ,

2793

3333
1 

  
































klnnlk
tt

klnnklknl

klnnlk

t
klnnlk

t
klnnklknl

klnnlk

 

Then
for  ,ZX nlk 

 

. ),()( and ),()( ),,()( ),,)(( 3

)(

33

)(

33

)(

33

)(

3 pcpcpcpcZ BRFIBPFIRFIFI 
          

Let 
  }:3:,,{ NqqkjikjiK 

.  

We consider the sequence nlkY
 defined by:   



 


otherwise       ,0

,),,( if  ,
  

KklnX
Y

nlk

nlk

 

Then nlkY
 belongs to the canonical pre-image of K step space of Z,                               

for  
. ),()( and ),()( ),,()( ),,)(( 3

)(

33

)(

33

)(

33

)(

3 pcpcpcpcZ BRFIBPFIRFIFI 
 

But 
for  ,ZYnlk 

. ),()( and ),()( ),,()( ),,)(( 3

)(

33

)(

33

)(

33

)(

3 pcpcpcpcZ BRFIBPFIRFIFI 
  

Hence the class of sequences under consideration are not monotone.  
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We consider the rearrangement nlkY
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 defined by: 
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Hence the classes of sequences under consideration are not symmetric.                                  
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Hence the classes of sequences are not convergence free.                                                     ■   

Theorem 9. The classes of sequence 
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Then the result follows from the following inclusion relation:                          
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nkmnkm YXdNNkn )0  , ( :) , (  
 

     . )0 , ( :) , (  )0 , ( :) , (   
nknk p
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p

nkm YdNNknXdNNkn
 

Using similar technique the other cases can be established.                                                    ■   
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 which is a contradiction. 

Corollary.   For two sequences nklpp 
 and 
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 we have 
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Proof. The result easily follows from the Theorem 10.                   

IV.CONCLUSION 

In this paper we have introduced and studied the notion of Ideal convergent difference multiple sequences 

spaces of fuzzy real numbers. We have established the completeness property of the introduced class of 

sequences. We have verified some algebraic and topological properties. The introduced notion can be applied 

for further investigations from different aspects. 
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