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Abstract- In 1981 H. Kizmaz defined the difference sequence spaces for crisp set and in 2007 Sahiner et al.
was first introduced the idea of triple sequence spaces. In this article, we introduce the classes of fuzzy real-

valued  multiple  sequences 3(CI(F))(A”‘ » P), 3(C°I(F))(Am » P), 3(CI(F))R(A"" P) and

I(F)yR _
3(Co ) (A, P) where P <p“”‘> is a triple sequence of bounded strictly positive numbers. We study
different topological properties of these spaces like completeness, solid, monotone, symmetricity convergence
free etc. We prove some inclusion results also.
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|. Introduction

In 1965 Zadeh [32] introduced the concepts of fuzzy sets and fuzzy set operations and subsequently several
authors have discussed various aspects of the theory and applications of fuzzy sets. Fuzzy set theory, compared
to other mathematical theories, is perhaps the most easily adaptable theory to practice. Instead of defining an
entity in calculus by assuming that its role is exactly known, we can use fuzzy sets to define the same entity by
allowing possible deviations and inexactness in its role. This representation suits well the uncertainties
encountered in practical life, which make fuzzy sets a valuable mathematical tool. In fact the fuzzy set theory
has become an area of active area of research in science and engineering for the last 40 years. Fuzzy set theory
is a powerful hand set for modelling uncertainty and vagueness in various problems arising in the field of
science and engineering. It extends the scope and results of classical mathematical analysis by applying fuzzy
logic to conventional mathematical objects, such as functions, sequences and series etc. The ideas of fuzzy set
theory have been used widely not only in many engineering applications, such as, computer programming [11],
population dynamics [3], quantum physics [20], control of chaos [10], bifurcation of non-linear dynamical
system [13], approximation theory [2] etc., but also in various branches of mathematics, such as, theory of
metric and topological spaces [8], theory of linear systems [22], studies of convergence of sequences of
functions [4,14]. While studying fuzzy topological spaces, we face many situations where we need to deal with
convergence of fuzzy numbers.

Using the idea of fuzzy real numbers, different types of fuzzy real-valued sequence spaces have been introduced
and studied by several mathematicians. The initial works on double sequences of real or complex terms are
found in Bromwich [5]. Hardy [12] introduced the notion of regular convergence for double sequences of real or
complex terms. Agnew [1] studied the summability theory of multiple sequences and obtained certain theorems
which have already been proved for double sequences by the author himself. Méricz [21] extended statistical
convergence from single to multiple real sequences and obtained some results for real double sequences.
Sahiner et. al. [24] developed statistical convergence for triple sequences of real numbers. A. J. Dutta et al.[7],
P. Kumar et al.[18], E. Savas and A. Esi [26], are a few to be named those who have introduced different types
of triple sequence spaces.
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11. Definitions and background

W,C,C,, ¢

Throughout the article N and R denote the sets of natural, and real numbers respectively and * denote

the spaces of all, convergent, null and bounded sequences respectively.

A fuzzy real number X is a fuzzy set on R iea mapping X:RL (=0, 1] ) associating each real nhumber

t with its grade of membership X (). Every real number r can be expressed as a fuzzy real number I as
follows:

1 if t=r
F(t): 0 otherwise

The a-level set of a fuzzy real number X ,0<a <1 denoted by [X] is defined as
[X]* ={teR: X(t) > a}.

A fuzzy real number X is called convex if X(®) 2 X(S) A X(N) = i (X(8), X(N), yypere S <t <.t

t, eR X (t,) =1,

there exists such that then the fuzzy real number X is called normal. A fuzzy real

-1
number X is said to be upper semi-continuous if for each £>0, X7[0,a+¢)), forall @ € L is open in the

usual topology of R. The set of all upper semi continuous, normal, convex fuzzy number is denoted by R(L).

_ L R
Let D be the set of all closed bounded intervals X = [X X ] on the real line R. Then X <Y if and only if
XL SYL and XR SYR

d(X,Y) = max (| X" - XTI YR ). 1 (D.d)

Also let is a complete metric space.

d(X,Y)=supd([X]*,[Y]%),for X,Y e R(L).

Let 4 RILDXRL) >R e defined by 0ast

Then d defines a metric on R(L) and (R(L)' d ) is a complete metric space.

In order to generalize the notion of convergence of real sequences, Kostyrko, Salat and Wilczynski [18]
introduced the idea of Ideal convergence for single sequences in 2000-2001. Later on it was further developed
by Salat et. al. [26], Das et. al. [6], Tripathy and Tripathy [30], Tripathy and Sen [29], Kumar and Kumar [19],
Sen and Roy [27] and many others.

X
Let X be a non empty set. A non-void class <2 (power set of X) is said to be an ideal if I is additive and
hereditary, i.e. if | satisfies the following conditions:

i) ABel=AUBel 4 (jjy Acland BcA=Bel.

Fc2®

A non-empty family of sets is said to be a filter on X if
(g eF
(i)A,BeF=>ANBeF

(iii) AeFandAcB =BeF.
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For any ideal I, there is a filter F(I) given by

F()={K<N:N\Kel}

X
An ideal Ic2 is said to be non-trivial if =& and X & I.

A
58 , SE = Im > re ()

A subset E of N is said to have density exists.

The details about the ideals of 2NN are introduced and investigated by Tripathy and Tripathy [29]. Throughout

the article, the ideals of ZA will be denoted by ls.

|3(p) c 2N><N><N

Example 1. Let i.e. the class of all subsets of N>XNXN g zer0 natural density. Then

3(p) is an ideal of ZNXNXN.

F F F F Fy\R Fy\R
Throughout s(W7)is (£2),5(C7), 5(Co )1 5(C7) 75 () denote the spaces of all, bounded,

convergent in Pringsheim’s sense, null in Pringsheim’s sense, regularly convergent and regularly null fuzzy real
valued triple sequences respectively.

A triple sequence can be defined as a function X:NxNxN —R(C).

A fuzzy real valued triple sequence X = <ka> is a triple infinite array of fuzzy real numbers Ko for all

n,lLkeN and is denoted by <x”"'> where X €R(L).

A fuzzy real-valued triple sequence X= <X ””‘> is said to be I3-(:onvergent to the fuzzy number Xo, if for all

>0 1K) e NxNxN:d(X,,,X,)>e}el,. I, -lim X,, =X,

' the set {0 We write

A fuzzy real-valued triple sequence X= <X””‘> is said to be I3-bounded if there exists a real number 4 such

that the set {(n,1,k) e Nx N xN:d(X,,0) > g} el

E
A fuzzy real-valued triple sequence space E” is said to be solid if <Y””<> cE whenever ‘Y“'k‘ S‘X“'k‘ for all
F
n1|1k € N and <>(n|k>e E 'l

. F . . . F . . .
A fuzzy real-valued triple sequence space E” is said to be monotone if E™ contains the canonical pre-image of
all its step spaces.

A fuzzy real-valued triple sequence E is said to be symmetric if S(X) cEF, for all Xe EF, where S(X)

. X =(X
denotes the set of all permutations of the elements of < ”'k>

<ank ®Ynlk> eEF,

. Fooo . .
A fuzzy real-valued triple sequence space E” is said to be sequence algebra if whenever

(X (Yo ) €EF.
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F
A fuzzy real-valued triple sequence space E is said to be convergence free if <Y””‘>E E whenever
(X )€EF. X =0 Y.« =0.

and implies

In 1981, H. Kizmaz [16 ] the difference sequence spaces for crisp set and studied the spaces

IW(A)’ C(A)’ Co (A) Later on Seva [ ] introduced the notion of difference sequences for fuzzy real numbers
a studied different properties of the spaces. In 2006, this concept was further generalised by Tripathy and Esi [
31] as Z(Am)= { (XK)EW:(Aka)E Z} where M20pe an integer and Z=2¢.C.l, and
A X =X = Xy for all K€ N Thereafter Tripathy and B. A. Baruah introduced the difference
sequences of fuzzy real numbers L. we introduced the following for triple sequence:

AanIk = xnlk - Xn,I+m,k - xn,l,k+m + xn,l+m,k+m - Xn+m,|,k + Xr1+m,|+m,k + Xn+m,|,k+m - Xn+m,|+m,k+m

Let = < p“k'> be a triple sequence of bounded strictly positive numbers. We introduce the following triple
sequence spaces:

s )AL, p)={X =(X) € (W) 1, —lim [d(A, X, » X,)]"™ =0, forsome X, eR(L)},
€' O)A, P ={X =(X ) € 5WF ) 1, —lim[d(A, X, ,O)]"* =0},

S AL, P)={X =(X ) € 3(WF ):there exists a real number z > Osuch that the set
{(n,1,k) e NxNxN:[d(A, X, ,0)]"™ > 1}e I}

<ank> &; (CI(F))R(Amv p) <ank> € 3(CI(F))(Am1 p)

if and only if and the following limits exist:

I, —lim [H(Amxn,k, 1,)]™ =0, foreach kN, for some I, e R(L),
[,—lim [H(Amxn,k,\],)]p"“ =0, foreach I N, for some J, € R(L)
and Ie,—lim[a(AmXnIk , K )" =0, foreach neN, for some K, e R(L).

<ank> = 3(C0|(F))R(Am’ p) <xnlk> € 3(COI(F))(Am1 9))

if and only if and the following limits exist:

l, ~lim[d(A,X,,,0)]"* =0, foreach keN
l,~lim[d(A,X,,,0)]"* =0, foreach leN
and I,—lim[d(A,X,, ,0)]" =0, foreach neN.

()4, p)={X = <ank> € 4(W"):sup [H(Amxn,k,ﬁ)] Prk < o0},

Let n.lk

(F)
Then 3(027) Ay P) is a complete metric space with respect to the metric P defined by
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— Pok
p(X’Y)zsup{d (Amxnlk ' AmYnIk)}M M = MaXx (1, H)a H :SUp pnlk < 0.
n,l,k

ni k where

Also, we define the following sequence spaces :
s ) F (AL, P) = 5(c'")(A,, P) ()AL, P),
s P)F (AL, P) =3¢ V)AL, P) N (L)AL, P),
;€ P)F(A,, p) = 5" ) (AL P) (D) (A, P,

2SN F (AL P) =56 (AL P) M ()AL, P).

For particular values of p and ideal I, these sequence spaces reduce to many well known sequence spaces.

X Y =
Let < ”'k> and < ”'k> be two fuzzy real valued triple sequences. Then we say that Ko = Yo for almost all

n, I and k relative to I3(in shorta.a. n, | &kr I3) if the set

{(n, LK) e NxNxN: X ,#=Y..rels.

Note. Let P= < p”k'> be a triple sequence of bounded strictly positive numbers and

H =supp,, <®
a b

. Then for sequences < nk'>and < nk'>of complex numbers, we have the following

inequality:

pnkl)

Pnw < D(‘ankl Pnw +‘bnk|

‘ankl +b,

D =max(1,2" ™).

where

We procure the following existing result.

F
Lemma 1. If a sequence space E™ s solid, then it is monotone.
For the crisp set case, one may refer to Kamthan and Gupta [15], p.53.
I11. MAIN Result

Theorem 1. The following statements are equivalent:

(I) <ank> € 3(CI(F))(Amv p)

= 3(CF)(Am1 p) Amxnlk = AmYnIk |

(ii) There exists a sequence <Y""‘> such that fora.a.n | &kr 3.

M ={(n;,1;,k,,) e NxNxN i, jme N}

(iii) There exists a subset of NXNxN gych that

MeF(ly) <Xni.,km>es(CF)(Am, p).

I(F)
Proof. (i) = (ii). Let <X””‘>e3(c YAy P) Then there exists Xo €R(L) such that

1, —lim [a(Aan,k , xo)]"“'k =0.
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>0

So for any ' we have the set

{(n,l,k) eNxNxN: Iim[a(Aan,k : xo)]""'k > ¢ }e Iy

Let us consider the increasing sequences (T, (M) and (N;) of natural numbers such that if " >,

q>Mj'and r>Nj. Then the set

{(n,l,k)eNxNxN:ns pil<gk<rand[d(a, X, Xo)|™ Zl}el3.
j

Y
We define the sequence < ””‘> as follows:

Ynlkzxnlk Ifn<Tl orl Ml orkSNl
) ) < ) ) <N.
Alsoforall (n, Lk with 11 <1 STia o My<h <My, Ny <k <Nj,,
[d(A KXo » X o)]pnlk
let Yo = K if otherwise Yoie = Xo-

We showthat< Yoi) € 3(€7)(Ap, P)-

et
Let €>0. we choose j such that

Pnik
We see that for n>TJ' |>Mi and k>Nj' [d(Am Yo » o)] <&

Hence <Ynlk> € S(CF)(Am! p)

T,<n<T I\/I<I_M. Nj<k£N

Next let j i1 and 1 then the set

A={(n,1Lk)e NxNxN:A X . =AY}

{(n,l,k)eNxNxN [d(A, X X) ™ = J}el

| A, X =AY 1.

This impliesAE 3 and so —Tmink for aa.n | & kr.

5", P) Xk =Y

(ii) = (iii). Suppose there exists a sequence < ”'k> such that “"nlk nk for a.a.n | &

cr o L M =1 LK) e NNXN AL Xy =AY o M e (1),

M={(n . 1;.kn) eNxNxN:i, j,me N}’on neglecting the  rows and

X ) € €A, P).

columns those contain finite number of elements. Then < irm

We can enumerate M as
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(iiiy = (i) From (iii), (i) follows immediately.

H =supp,, <o, I(F)BP
Theorem 2. If nlk then the classes of sequences (€))7 (An, P),
I(F)\BP I(F)\BR 1(F)\BR
3(Co )" (A ) 5(€7) 7 (A, P) and 3(Co )™ (An, P) are complete metric spaces with respect

to the metric p defined by

Pnk

p(X !Y) = S?E[H(Amxnlw AmYnIk)] M '

M =max (1, H).

where

1(F)\BP
Proof. Let us consider the space 3(C ) (Am’ P)-

X® 1(F)\BP (F) XO=(x_ )
Let< > be a Cauchy sequence in s (An, P) = 5(07) (A, P), where < nlk >

(F) (F)
Since 3(€°° )(Am’ P) is complete, so there exists X &5(C ) (A, P) such that

i i) _
!mx =% where X :< “”‘>'

1(F)\BP
We claim that X e 3(C ) (p)

O<ex<l N, € N

()
Since < > is Cauchy, so for a given * there exists such that

p(X(i),X(j))<£,

LS
for all 1) =N

5

T . . 1Pnk
[d (Amxnlk() ’Amxnlk(J))]V <
= 3 forall

I,j=n,.

M

- i i E | Pnk
= d (Amxnlk() 'Amxnlk“))<(j ’ -
3 for all b 120,

XU X0 e (¢ (8, )

A . . Y.
Again since so there exists fuzzy numbers Yi and ! such that the sets

Az{(n,l,k)eNxNxN:[a(Aan,k(i),Yi)]p"'k<(§j }EFUS)
And
Bz{(n,l,k)eNxNxN:[a(Aan,k“),Yj)]p"'k<[§j }EF(I3)

hen AN B € F(15). Let (N, 1,K) e ANB.

Then a(Y. ’Yj) Sa(Yi !Amxnlk(i))+a(Aanlk(i) ’Amxnlk(j))+a(Aanlk(j) ij)
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i i>
<& forall 1) =N

i—w

Hence < '> is a Cauchy sequence fuzzy real numbers. So there exists a fuzzy real number Y such that
limY, =Y.

@)
Let 7~ 0 be given. Since X =X, so there exists T € N such that

o x)<(2)"

3

1)
The number t can be chosen in such a way that together with (1) we get
[H(Yt ,Y)]p"Lk <
3
®
(Xu), Y
Since is I-convergentto ' so we have

:{(n,l,k) eNxNxN:[d(a, X, @ )™ <%}e F(1,)

So for each (n ! I’k) eC, we have

(A X ™ < D2[A(AL X, A X ™ + D2[d(A, X2 YO

gDz[%j+D2[j (gj: L,

_ H=supp, <.
H-1 nk
where D =max (L, 277), nk

+oldey, )™

A_X
Hence < m ”'k> is I-convergent to Y.

I(F)\BP
This implies that 2(C7)7 (An . D) is complete

Using similar technique the other cases can be established

1(F) (F) 1(F)
Theorem 3. The classes of sequences 5 ), Pis (C7) (A, P)s (€7 (AL, P,
3

1(F)\BP 1(F)\BP 1(F)\BR
(c )7 (Am: P)s (C )7 (An, P)s (C )7 (An: P) are closed under addition and
scalar multiplication

Proof. — We consider the space 3(C")(An, P) . Let <X””‘>’ <Y"'k> €3G )(An. ) and 0<& <Ll g

a, be two scalars. Then there exists Xoand 0 € R(I‘)be such that

1y —lim [d(A, X, X, )™ =0 ~tim [d(a, Y, Y =0
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(AL X e+ Ao s X +Yo)™ < DA X e . Xo)™ + DlA(A, Yo, Vo)™

m ' nlk ? m " nlk?

D= max(l, 2H71) SUP Py <o

Where and H =

Taking I- limits on both sides of the above inequality, we have

- Iim[a(Aan,k +AY 0 X, +Y0)]""'k
<1, —lim D|A(A, X, Xo )™ + 1y —lim Dl (A, Y, Yo )™

L= imd (A, X + A Yo Xo +Y,)™ =0,

m 'nlk ?

Pni

Am)(nlk +A Y € S(C(I)(F))(Am’ p)

m " nlk

1(F) I(F)
-". the space 3(Co" )(An, P) is closed under addition. Similarly we can show that 3(Co " )(An, P) is closed
under scalar multiplication.

1(F) I1(F)\R I1(F)y\BP
Theorem 4. The classes of sequences 3(C0 )(Am . P), 3(C° ) (Am’ P). 3(C° ) (Am’ P) and

1(F)\BR
3(C° ) (Am  P) are solid as well as monotone.

I(F)
Proof. We consider the space 3(Co )(An s P).
1(F) — _ _ _
Let <ank> S 3(C0 )(Am ’ p) and <Ynlk> be SUCh that d(AmYn"( y 0) S d(Aer‘llk , 0)’for a” n , I, k e N.

oA

Let €>0 pe given. Then the solidness of 2(C m p)'follows from the following inclusion relation:

£, 1K) e NxNxN:[d(A, X, )™ > e} o{(n, 1Lk) e NxNxN:[d(A, Y, , O™ =&}

Also by Lemma 1. it follows that the classes of sequences under consideration are monotone Using similar
technique the other cases can be established.. [

3(CI(F))(Am , p)’s (CI(F))R(Am ’ p)’ 3(CI(F))BP(Am , p)

Theorem 5. The classes of sequences and

1(F)\BR
3(C ) (Am . P) are neither solid nor monotone in general

Proof. The result follows from the following example.

Acl;, p,..=1 n,l,k e N.

Example 1. Let for all

X
We consider the sequence < ”'k> defined by:

For all (n’l’k) €A
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1+3nlkt, for —Lstgo
3nlk
1-3nlkt, for 0<tsL
3nlk
0, otherwise
ank(t):
otherwise X =0
Let m = 3, then we have
ASXnIk(t)z
. 3nlk(n +3)1 +3)k +3) ¢ for —_L 1 <t<0
3(nl+1k +nk)+9(n+1+k)+ 27 3nlk - 3(n+3)1+3)k +3)
1 3nlk(n+3)(1 +3)k +3) ¢ for O<t< L _ 1
3(nl+ 1k +nk)+9(n+1+k)+27 3nlk  3(n+3)I +3)k +3)
0, otherwise

(X )€z, for
Then
Z = 4(c" ™) (A5, p), 57N (A5, P), (€ T)F (A;, p)and 4(c"T)F (A5, p).

Lot K={(i, j,k):i+j+k=3q:9eN}

Y
We consider the sequence < ”'k> defined by:

X i (n,1,k)e K,
Ynlk = 3= )
0, otherwise

Then <Y”"‘> belongs to the canonical pre-image of K step space of Z,
or 2= XA, ), 5" ) (A, P), 5(€'P)F (A, p)and 4(c' ) F (A4, p).

B (Yo) 2 Z, for

Z = 4(c" ™) A5, p), 5(€" ) (Ag, ), 5" )P (Aq, p)and 4(c'T)F (A, p).

Hence the class of sequences under consideration are not monotone.

Therefore by Lemma 1. the class of sequences are not solid. |

o) (A, p)and 4(cq

(F)\BR
Theorem 6. The classes of sequences 5(C )" (A P) are symmetric for

ls=15(P) and I=1(f), the class of finite subsets of N, otherwise they are not symmetric.

Proof. Let le = 1a(P) and I=1(f). .

3G ) (A P) = 3(Co ) ¥ (An, P) g 3(Co' )™ (A, P) = 5(C5) ™ (A, P).
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Now for Kik) € (6T (A, P) (= 5(c5) (A, P)) e>0

and given * we have

{1 k)eNxNxN :[a(AmX“'k : Xo)]pnlk = €} is a finite subset of NXNxN.

1(F)\R 1(F)\BR
Hence the classes of sequences 3(Co ) (A, P)and (G )™ (A, P) are symmetric.
1(F) 1(F) 1(F)\R
Theorem 7. The classes of sequences 2(C)(AG P) s (S XA, P (€7) (A, P),
I(F)\BP 1(F)\BP 1(F)\BR
2(C7)7 (An, ) 5(@7) (A, p) @nd 5(CT) T (A, P) are not symmetric in general.
Proof. The proof follows from the following example.

2, for n even and all I,keN

_ Prik :{ ]
EXample 2. Let |3 - |3(IO) and 3, OtherWISE

X
We consider the sequence < ”'k> defined by:

_i3 .
For V=1 1€ N ardforall lLkeN.
t
1+ , for —3/n<t<0
3
t
- , for 0<t<3n
3/n
0, otherwise
ank(t):
otherwise KXok =0.
Let m = 3, then we have
t for —3/n+33¥n+3<t<0

T S—
B/n-33/n+3
t
1-—— . for 0<t<3/n-33/n+3
2/n-B/n+3 ‘/—

0, otherwise

ASXnIk (t) =

Then (X o) €Z, for

Z = 5" )45, Pis (€ V) (A5, P)s (€1 7) (A5, )5 (677N P (A4, P),
3 (€ ) ¥ (A5, p)s (€' 7)* (A, P).

Y X
We consider the rearrangement < “”‘> of < ””‘> defined by:

For I, k odd and for all neN,
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t

1+—, for —-3n<t<0
3n
1—L, for 0<t<3n
3n
0, otherwise
Ynlk (t) =
otherwise Yo =0.
t
1+§, for —-9<t<0
t
——, for 0<t<9
9
0, otherwise
A3Yn|k (t) =

Then (Yo) 22, for

Z = 5(c" )45, Pis (€ V) (A5, P)s (€1 7) (A5, )5 (67N P (A5, P),

3 (€ 7)F (A5, )5 (€)™ (A5, P).

Hence the classes of sequences under consideration are not symmetric.

1(F) 1(F) I(F)\R
Theorem 8. The classes of sequence 3(C)ALP) s (G )AL P) s (CT) (AL D),
sCRALP) L€' T)F (AL P) s (S T (AL P (€' D) (AL, P)

1(F)\BR
and; (") ™ (An. P) are not convergence free.

Proof . The result follows from the following example.

1

Pri =
AEI3, « 3 forall

Example 3. Let n,l,keN.

Consider the sequence (X”k) defined as follows:

For all (n’l’k) z A,
1
1+3(n+1+k)t, for ———<t<0
3(n+1+k)
1-3(n+1+k)t, for 0<ts;
3(n+1+k)
0, otherwise
Xn|k(t)=
Otherwise Ko =0.

Let m = 3, then we have,
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l+3(n+|+k)(n+|+k+9)t, N S 1 e
27 3n+1+k) 3(n+1+k+9)
1_3(n+|+k)(n+|+k+9)t’ for O<ts< 1 _ 1
27 3(n+1+k) 3(n+l+k+9)
0, otherwise
ASXnIk(t)z

Then<xn|k> €Z, for Z= 3(CI(F))(A3’ p)’s (C(I)(F))(Asi p)’s (CI(F))R(A3’ p)’s (C(;(F))R(p)s

(€)% (Ag P (G ) (A5, P)us (€1F) ™ (A5, P) and, ()™ (45, P.

Y
Consider the sequence < ””‘> defined by:

For (na|1k)¢A1
1+L, for —n+|+ksts0
n+1+k 3
- 3t , for O<tsn+I+k
n+I1+k
0, otherwise
Ynlk(t):
otherwise Yo =0
1+§’ for _n+|+k_n+|+k+9s,[So
9 3 3
1_§, for 0<t£n+|+k+n+l+k+9
9 3 3
0, otherwise
A3Ynlk(t):

Then (Yo )2 Z, for

Z = 5(c" ™) (As, P)is (G 7)(As, P)s (€17 (Ag, s (6 7) 7 (A, D),
2 )T (A5, P)is (6" 7) % (Agy P)a (€' (A, ) and, (65 7)™ (A, P).

Hence the classes of sequences are not convergence free. ]

Theorem 9. The classes of sequence 3(CI(F))(Am’ p),3 (Cé(F))(Am’ p),3 (CI(F))R (An: P):

6D A P) S P)F (A P)a (&' )T (A, P)a (€' )F (A, )

I(F)yBR
and; (¢, )™ (An, P) 4pe sequence algebras.

I(F)
Proof. We consider the space 3(Co )(An, P)-

Let (Xt )s (Yae) € 3G 7)A,, P)and 0< & <1.
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Then the result follows from the following inclusion relation:

{n k) eNxN:[da, X, 4, O <ef
5 {(n K eNxN:[d@a X, 0" < g}m {(n K eNxN:[d(aY,, 0" < g}.

Using similar technique the other cases can be established. [

1(F)\BP 1(F)\BP 1(F)\BP
Theorem 10. The classes of sequence {(C)7 (A P (6 )T (A, Pl (€))7 (A, P) and
1(F)\BR F
)" (A P) are nowhere dense subsets of () (An, P).
1(F)\BP 1(F)\BP 1(F)\BP
Proof. Since the classes of sequence {(C)7 (A P (6 )T (A, Pl (€))7 (A, P) and
1(F)\BR F
€)™ (A, ) are proper subsets of the space (1) (A, p)'We get the result from

Theorem 2.

Theorem 11. For two sequences p= < p”k'> and 47 <q”k'> we have

P pnlkj
liminf| —/ | > 0,
3(C0I(F))BP(Ama p) > 3(COI(F))BP(Am;q) if and on|y it (n,l,k)eK ( ik where K e F(|3)

Proof. Let us suppose 1)
(n, 1,k) e K.

Then there exists @ >0 such that Prik = @nik g0 sufficiently large pair

1(F)\BP
Let <ank> €3G )" (An. P). Then for O <€ <L e have

A={(n,1,k)eNxNxN:[d(a, X, . 0)[" <s}eF(L,).

Let B=K N A Then BeF(ly).

- N\ [Pk - A\ Pk
Now for each (n.1.k)eB, we have [d(AmX“'k ’O)] < {[d(Aan'k ' O)T }”
Hence <xnlk> € 3(C(I)(F))BP (Am ’ q)
So S(COI(F))BP (Am’ p) 2 3(COI(F))BP (Am’q)'

'Y (A P) 246 )T (A

Next let 2(Go m’Q)'But there exists no Ke F(I3) such that (1) holds.

C={(n,1;ky):i,jjmeN}= NxNxN Wi

Then there exists a set ith Ce |3 such that

Prik, < Anik, -
< X nlk > :
Let the sequence be defined by:
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1

" if n=n,l=1k=k

1)e
Xk = i

0, otherwise

Then <ank> € S(C(I)(F))BP (Am’ p)

[H(Amxniljkm ,(_))]p"‘”km >exp(_l(i)gi

But j which is a contradiction.

p= < pnkl> and q= <anl>1

Corollary. For two sequences we have

N Pk Lo qnlkj

liminf| —/k | >0 liminf| /& (>0
3(COI(F))BP (Am’ p) _ 3(COI(F))BP (Aqu) i (n,1,k)eK [qnlk j and (n,l,k)eK [ pnlk
where KeF(l,).

Proof. The result easily follows from the Theorem 10.
IV.CONCLUSION

In this paper we have introduced and studied the notion of Ideal convergent difference multiple sequences
spaces of fuzzy real numbers. We have established the completeness property of the introduced class of
sequences. We have verified some algebraic and topological properties. The introduced notion can be applied
for further investigations from different aspects.
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