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Abstract- Nithyanantha Jothi and Thangavelu studied the properties of the product of    two power sets and introduced 

the concept of binary topology. In this paper, properties of the product of arbitrarily n-power sets are discussed where n 

>2. Further an n-ary topology on the product of power sets similar to binary topology is introduced and studied.  
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I. INTRODUCTION 

The concept of a binary topology was introduced and studied by Nithyanantha Jothi  and Thangavelu [4-9] in 2011. 

Recently Lellish Thivagar et.al.[3] extended this notion to supra topology, Jamal Mustafa[2] to generalized topology 

and Benchalli et.al.[1] to soft topology. Nithyanantha Jothi and Thangavelu[9] extended the concepts of regular 

open and semiopen sets in point set topology to binary topology. The authors[10] studied the notion of nearly binary 

open sets in binary topological spaces. In this paper, the notion of n-ary topology is introduced and its properties are 

discussed.  Section 1 deals with basic properties of the product of power sets and section 2 deals with n-ary topology 

with sufficient examples and some basic results. 

 

II. PRODUCT OF POWER SETS 
Let X1, X2, X3,…,Xn be the non empty sets. Then P(Xi) denotes the collection of all subsets of X, called the power 

set of Xi.  P(X1) P(X2)… P(Xn) is the cartesian product of the power sets P(X1), P(X2), …, P(Xn). Examples 
can be constructed to show that the two notions „product of power sets‟ and „power set of the products‟ are different. 

When |X1|=|X2| =2, it is noteworthy to see that |P(X1X2)|= |P(X1)P (X2)| =16. But this is not always true as 
shown in the next proposition . 

 

2.1. Proposition- 

 Suppose X1,X2,…, Xn are finite non empty sets satisfying one of the  conditions (i).n>2 , |Xi|>1for each 

i{1,2,…,n}; (ii).n=2, |X1|>2 ,|X2|2;  (iii).n=2, |X2|>2, |X1| 2.Then  |P(X1X2…Xn)| > | P(X1) P(X2)… 
P(Xn)|.  

Proof: Suppose Xi has mi elements for each i1,2,…,n}. Then each P(Xi) has 
im

2 members. Therefore 

X1X2…Xn has m1m2…mn elements that implies P(X1X2…Xn) has 
n21 m...mm

2


elements where 

as P(X1) P(X2)… P(Xn) has 
n21 mmm

2...2.2  members. That is P(X1) P(X2)… P(Xn) has 

n21 m...mm
2


members. Under the conditions on n and |Xi|  it follows that 

n21 m...mm
2


>

n21 m...mm
2


. 

This shows that  

|P(X1X2…Xn)|>| P(X1) P(X2)… P(Xn)|.   
 
2.2. Proposition- 

 Let N be the set of all natural numbers and a,b,c,d,eN.  
 (i). The equation ab=a+b has exactly one solution in N. 

(ii).The equation abc=a+b+c has at exactly  six solutions in N. 

Proof:  Solutions can be found by inspection method. If a=1 then ab=a+b gives b=1+b that implies (a=1, b1) cannot 
be a solution for (i).  Clearly (a=2, b=1) is not a solution for (i).  But (a=2, b=2) is a solution for (i).  Now suppose 

(a,b) is a solution for (i) in N.  Then ab=a+b  that implies a divides a+b. Since a divides itself it follows that a 

divides b.  Similarly b divides a that implies a=b from which it follows that a2=2a .  This proves that a=b=2.  

Therefore (2,2) is the only solution of (i) in N.  This proves (i).   

Now for the equation (ii), suppose a=1,we get  bc=1+b+c.  „b=1‟ is not possible. If b=2 then 2c=1+1+c=2+c that 

implies c=2.  Therefore (a,b,c) = (1,2,3) is a solution for (ii).  The other solutions are (1,3,2), (2,3,1), (2,1,3), (3,1,2), 
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(3,2,1).  Hence the equation abc=a+b+c has at least six solutions in N.  Now suppose (a,b,c) is any solution in N for 

(ii).  Then no two of a,b,c are equal to 1.  For, suppose a=b=1. Then from (ii), c= 2+c that is not possible.  No two of 

a,b,c are equal. For, if a=b then a2c = 2a+c that implies c divides 2a. Therefore 2a = kc for some natural number k.  

Then using this in a2c = 2a+c we get a2 = k+1.  Therefore  2a = kc=(a2-1)c  which implies  c =  2a/(a2-1). Since  

a>1 and since a< (a2-1)  we see that c<2 that implies c=1 . Then using c=1 and a=b in (ii) we get a2 = 2a+1 which 

has no solution for a in N.  Hence we conclude that a,b,c are all distinct.  We assume that a<b<c.  If a=1 then  

bc=1+b+c that implies b=2 and c=3.  If a =k>1, bk+1 and c k+2  then abc  k(k+1)(k+2)>(k+1)(k+2)>6  and 

a+b+c  3k+3 >6. Therefore any  solution other than the permutations of (1,2,3) must satisfy   a+b+c =abc >6.  This 
shows that the equation (ii) has exactly six solutions in N. 
 

2.3. Proposition- 

 For any integer  k>2,  the equation a1+a2+…+ak = a1.a2.….ak has at least  k(k1) solutions in N.  
Proof:  Let (a1,a2,…,ak ) be a positive integral solution  for the equation  

                                         a1+a2+…+ak = a1.a2.….ak.                                                   (Eqn.1) 

 Then it is not possible to have  a1=a2=…=ak =1.  For if  a1=a2=…=ak =1 then k=1. Again if a1=a2=…=ak-1 =1  

and ak>1  then  k-1+ ak  = ak  that implies k=1.  

Suppose  a1=a2=…=ak-2 =1 , ak-1>1 and ak>1.Then  k-2+ ak-1 +ak  =  ak-1.ak.   

 Let     ak-1  =r >1.  Then r. ak = k+r-2 + ak  that implies  

ak = 1-r

2-rk 

 = 1+ 1-r

1-k

.                                                              (Eqn.2) 

If r>k  then  1-r

1-k

 is a proper fraction that implies ak  is not an integer. Therefore we have           2 r k.  If r=2  

then ak =k  and  if r=k  then ak =k.  Therefore  if  

a1=a2=…=ak-2 =1 , ak-1=2 and ak=k  then (a1,a2,…,ak )  is a solution of              (Eqn.1) 
 

 This shows that (a1,a2,…,ak ) = (1,1,…1,2, k ) is a solution for (Eqn.1).  Clearly  any  permutation of  (1,1,…1,2, k 

) is also a solution for (Eqn.1).    

Therefore  the number of such solutions is 2)!-(k

k!

 = (k1)k. Depending upon the values of k,   (Eqn.1)  may have 

other solutions. For  take k=5.  Then  

The equation abcde = a+b+c+d+e  has at least   20  solutions in N which may be got by taking r=2 in  (Eqn.2).  If  

we put r =3 in  (Eqn.2)  we get e=3  that implies (1,1,1,3,3)  is also a solution for  abcde = a+b+c+d+e.  Therefore 

for k>2, (Eqn.1)  has at least k(k-1) solutions in N. 

The following proposition can be established   by choosing r in Eqn.2  such that 1-r

1-k

 is a positive integer.  
2.4. Proposition- 

(i).If k=5, 10  then (Eqn.1)  has at least 3k(k-1)/2 solutions in N. 

(ii).If k=7, 9,11  then (Eqn.1)  has at least 2k(k-1) solutions in N. 

(iii).If k=13  then (Eqn.1)  has at least 3k(k-1) solutions in N. 

 

From the above discussion, the following lemma can be easily established. 

2.5 Proposition-  

For any integer k>1,  each of  the strict in equations a1+a2+…+ak < a1.a2.….ak  and a1+a2+…+ak > a1.a2.….ak  

has at least one solution in N. 

 The above discussions lead to the following proposition.  

 
2.6. Proposition- 

 Let   |Xi| = mi for each i{1,2,3,…,k}.  Then   

|P(X1X2…Xk)|= | P(X1) P(X2)… P(Xn)|, P(X1X2…Xk)| > | P(X1) P(X2)… P(Xn)| and  

|P(X1X2…Xk)| < | P(X1) P(X2)… P(Xn)|  according as ( m1,m2,…,mk ) is a solution of a1+a2+…+ak = 
a1.a2.….ak ,  a1+a2+…+ak < a1.a2.….ak  and  a1+a2+…+ak > a1.a2.….ak   respectively.  



International Journal of New Innovations in Engineering and Technology 

Volume 9 Issue 3– December 2018  020  ISSN: 2319-6319 

  

Any typical element in P(X1) P(X2)… P(Xn) is of the form (A1,A2,…,An) where AiXi for i{1,2,…,n}. 

Suppose (A1,A2,…,An) and (B1,B2,…,Bn) are any two members in P(X1) P(X2)… P(Xn).   Throughout this 
chapter we use the following notations and terminologies.  

    (X1, X2,…,Xn) is an n-ary absolute set  and (, , ,…,)  is an n-ary null set or void set  or empty set in 

P(X1) P(X2)… P(Xn). (A1,A2,…,An)(B1, B2,…,Bn) if AiBi for every i{1,2,…,n}  and (A1,A2,…,An)  

(B1, B2,…,Bn) if AiBi for some i{1,2,…,n}. Equivalently  (A1,A2,…,An)=(B1, B2,…,Bn) if Ai=Bi for every 

i{1,2,…,n}. If AiBi for each i{1,2,…,n}  then we say (A1,A2,…,An)  is absolutely not equal  to (B1, B2,…,Bn) 

which is denoted as (A1,A2,…,An) a (B1, B2,…,Bn).  Let xiXi and AiXi for every i{1,2,…,n}. Then  (x1, 

x2,…,xn)(A1, A2,…, An) if xiAi  for every i{1,2,…,n}. 
 

2.7. Definition- 

Let Xi be an infinite set for every i{1,2,…,n}. 

 (A1, A2, …, An) is finite if Ai is finite for every i{1,2,…,n} and is infinite if  

Ai is infinite for some i{1,2, ,…,n}. 
 

2.8. Definition- 

Let Xi be an uncountable set for every i{1, 2,…,n}, 

 (A1, A2,…,An) is countable if Ai is countable for every i{1,2,…,n} and is uncountable if  Ai is uncountable  for 

some  i{1,2,…,n}. 
 

2.9. Proposition- 

(x1, x2,…,xn)(A1, A2,…,An) iff (x1, x2,…,xn)  A1A2…An .  
     

The notions of n-ary union, n-ary intersection, n-ary complement and n-ary difference of n-ary sets are defined  

component wise.  Two n-ary sets  are said to be n-ary disjoint if  the sets in the corresponding positions are disjoint 

and (A1, A2, …, An) is a somewhat empty  n-ary set if Ai  for at least one i{1,2,…,n} and Aj = for at least 

one j{1,2,…,n}. 

 Let S denote the collection of all somewhat empty n-ary sets in P(X1) P(X2)… P(Xn). Let N P(X1) 

P(X2)… P(Xn) \ S, the collection of all n-ary sets other than  somewhat empty n-ary sets. The next proposition 

shows that N  can be considered as a  proper subset of  P(X1X2…Xn). 
 

2.10. Proposition- 

Let : N  P(X1X2…Xn) be defined by (A1,A2,…,An) =A1A2…An for each element (A1,A2,…,An) in 

P(X1) P(X2)… P(Xn).  Then  is injective but not surjective. 

Proof:  Suppose (A1, A2,…,An) and  (B1, B2,…,Bn) are any two  distinct  members of M.   Then  AiBi for some  

i{1,2,…,n} that implies A1A2…An  B1B2…Bn.  Therefore  

(A1, A2,…,An)    (B1, B2,…,Bn)  that implies   is injective.  Further   is not surjective  as shown below. 

X1={a, b, c} and X2={1, 2}, A1X1 and A2X2.  Let S={(a, 1), (b, 2)}X1X2. It can be seen that there is no 

(A1, A2)P(X1X2) such that A1A2=S.     
  

2.11. Remark- 

The function , defined above is not injective if we replace M  by P(X1) P(X2)… P(Xn). 

 Let f:YX1X2…Xn be a single valued function. Then it induces a function  

f-1: P(X1) P(X2)… P(Xn)P(Y) that is  an n-ary set to set valued function defined  by f-1((A1, 

A2,…,An))={y:f(y)(A1, A2,…,An)}={y: pi(f(y))Ai for each i{1,2,…,n}} where each pi is a projection of 

X1X2…Xn  onto Xi .   
 

2.12. Proposition- 

Let f:YX1X2…Xn be a  single valued function. Then  

 f-1((A1, A2,…,An))= f-1(A1A2…An) for every (A1, A2,…,An)  M. 

Proof: f-1((A1, A2,…, An)) ={y: f(y)(A1, A2,…,An)}  

={y: pi(f(y))Ai for each i{1,2,3,…,n} } = {y: f(y)A1A2…An}  
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= f-1(A1A2…An). 
 

2.13. Proposition- 

Let f:YX1X2…Xn  be a  single valued function.  Then  f-1 preserves  n-ary union and n-ary intersection.  
 

2.14. Proposition- 

P(X1) P(X2)… P(Xn) is a complete distributive lattice under n-ary set inclusion relation. 
 

III. N-ARY TOPOLOGY- 

Let X1, X2, X3,…,Xn be the non empty sets. Let T P(X1) P(X2)… P(Xn). 
3.1. Definition- 

T  is an n-ary topology on (X1, X2, X3, …, Xn) if the following axioms are satisfied. 

(i). (, , ,…,) T  

(ii). (X1, X2, X3, …, Xn) T  

(iii) If (A1, A2,…, An), (B1, B2, …, Bn) T    then  

 (A1, A2,…, An)(B1, B2,…,Bn) T      

(iv) If (A1, A2, …, An) T    for each   then




  )A..., ,A, (A n21

 T  . 

If T is an n-ary topology then the paire (X, T )  is called an n-ary topological space. The elements 

(x1,x2,…,xn)X1X2…Xn are called the n-ary points of (X, T ) and the members (A1,A2,…,An) of P(X1) 

P(X2)… P(Xn). are called the n-ary sets of  (X, T ). The members of T are called the n-ary open sets in (X, T ).   

It is noteworthy to see that product topology on X1X2…Xn and n-ary topology on (X1, X2, X3, …, Xn) are 

independent concepts as any open set in product topology is a subset of X1X2X3…Xn and an open set in an n-

ary topology is a member of P(X1) P(X2)… P(Xn). 
 

3.2. Examples- 

(i).I = { (, , ,…,), (X1, X2, …, Xn)}  is an n-ary topology, called indiscrete  n-ary topology . 

(ii). D = P(X1) P(X2)… P(Xn) is an n-ary topology, called discrete n-ary topology . 

(iii). {(, , ,…,)}{ A: a=(a1, a2, a3, …, an) (A1, A2, A3, …, An) } is an n-ary topology, called n-ary point 
inclusion n-ary topology.  

(iv). {(, , ,…,)}{A : BA } is an n-ary topology, called n-ary set inclusion n-ary topology.  

(v). { (, , ,…,),  (A1, A2, A3, …, An)  , (X1\A1, X2\A2, …,Xn\ An), X } is an n-ary topology  . 

(vi). If B  A then {(, , ,…,), B, A, (X1, X2, X3, …, Xn) } is an  n-ary topology. 

(vii). If {(, , ,…,),  A, (X1, X2, X3, …, Xn) } is an  n-ary topology. 

(viii). Diag(X) ={{ (A1, A1,…,A1) : A1 X1 } is an n-ary topology . 

(ix). F = {(, , ,…,)}{ A : (X1\A1, X2\A2, …,Xn\ An),  is finite } is an n-ary topology  called co-finite n-
ary topology.   

(x). C = {(, , ,…,)}{ A: (X1\A1, X2\A2, …,Xn\ An),,  is countable } is an n-ary topology  called co-
countable n-ary topology.   

(xi). {X}{ A : (a1, a2, a3, …, an) A} is an n-ary topology, called n-ary point exclusion n-ary topology.  

(xii). Let R= the set of all real numbers and Rn = the Cartesian product of n-copies of R.  Let a=(a1, a2, …, an) (R, 
R,…, R). Then for each r=(r1, r2, …, rn) >0. Let S(a, r)=( S(ai, ri),,…, S(an, rn)) where  S(ai, ri)={xi: |xi-ai|<ri} for 

i{1,2,3,..,n}. Let E = the set of all n-ary sets (A1, A2,…, An)P(R)P(R)…P(R) such that for every (a1, 

a2,…,an)(A1, A2,…,An) there exists (r1, r2,…, rn) >0  such that   

S(ai, ri)Ai  for i{1,2,3,..,n}.  Then E is an n-ary topology, called n-ary Euclidean topology over R.  
The next proposition is easy to establish. 

 

3.3. Proposition- 

Let f:YX1X2…Xn  be a  single valued function. Let T   be an n-ary topology on X. Then f-1(T ) ={f-1((A1, 

A2, A3, …, An)): (A1, A2, A3, …, An)T } is a topology on Y.   
 

3.4. Proposition- 
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 Let fi:YXi be a  single valued function for every i{1,2,3,…,n}. Let f = (f1, f2,…,fn):YX1X2…Xn  be 

defined by f(y) = (f1(y), f2(y),…,fn(y)) for every yY where fi(y) =pi(f(y)) for every yY. Let  be a topology on 

Y. Then if f is a bijection then{f(A): A}is an n-ary topology on (X1, X2,…,Xn).  

Proof:  Let A be a subset of Y and yA with f(y)f(A).Then 

 f(y) =(f1(y), f2(y),…,fn(y))(f1(A), f2(A),…,fn(A)). Conversely let  

 (x1, x2,…,xn)(f1(A), f2(A),…,fn(A)) that implies xi=fi(y)=pi(f(y)) for some yA, i{1,2,3,…,n}. That is  (x1, 

x2,…,xn)f(A). Therefore f(A)=(f1(A), f2(A),…,fn(A))P(X1)P(X2)…P(Xn).  Since f is a bijection, each fi is 

also a bijection. Therefore it is easy to verify that {f(A):A}is an n-ary topology on  (X1, X2,…,Xn). 
 

3.5. Proposition- 

Let p be a permutation of (1,2,,…,n) defined by p(i)=pi, i{1,2,3,…,n}. Let T  be an n-ary topology on (X1, 

X2,…,Xn). p(T) ={(Ap(1), Ap(2),…,Ap(n)): (A1, A2,…,A2)T} is an n-ary topology on (X p(1) , Xp(2),…,X p(n) 
). 

Proof:  Follows from the fact that (Ap(1), Ap(2),…,Ap(n))P(X p(1))P(X p(2)) …P(X p(n)) iff (A1, 

A2,…,A2) P(X1) P(X2)… P(Xn).  
The next two propositions can be proved easily. 

 

3.6. Proposition- 

Let T  be an n-ary topology on (X1, X2,…,Xn). T1 ={A1: (A1, A2,…,A2) T} and T 2 , T 3 , …, T n  can be 
similarly defined. Then T 1 , T 2 ,, …, T n  are topologies on X1, X2, …,Xn  respectively.  

 

3.7. Proposition- 

Let  1, 2, …,n   be the topologies on X1, X2, …,Xn  respectively.  Let T     = 12 …n  = {(A1, A2,…,A2): 

Aii }. Then T  is an n-ary topology on (X1, X2,…,Xn). Moreover T i = i  for every i{1,2,3,…,n}. 
   

IV. CONCLUSION- 

The concept of binary topology has been extended to n-ary topology for n>1 sets.  The basic properties have been 

discussed.  In particular it is observed that the notions of product topology and n-ary topology are different.  More 

over the connection between the product topology and an n-ary topology is studied. 
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