A Survey of Outdoor Scene Classification

Mrs. Jayamala D.Pakhare¹, Dr. M.D.Uplane²

¹Department of Electronics Engineering, D.K.T.E.'s Textile and Engineering Institute, Ichalkaranji-416115, India ²Savitribai Phule Pune University, India

Abstract- Every day thousands of images can be captured, and stored in database, which implies the necessity to classify, organize and access them using an easy, faster and efficient way. Nowadays the classification of images into required class is a challenging and important problem. Many different approaches concerning scene classification have been proposed in the last few years. This paper presents a detailed survey of some of the most commonly used outdoor scene classification approaches.

This paper surveys some systems dealing with the recognition of objects in outdoor environments. The main goal of the paper is to discuss the different approaches for segmentation, object detection, feature identification and the classification of the images. Considering that outdoor scenes are especially complex to treat in terms -wide variety of objects in size, color, texture etc and in different illumination conditions.

Keywords – Outdoor scene, Image segmentation, Object recognition, feature identification.

I. INTRODUCTION

Scene classification is a challenging problem in a computer vision system. For the digitization of visual information it is necessary to develop the technique which is helpful for automatic photo organization from a large number of stored photos. The purpose of this paper is to discuss the ideas and techniques used for scene recognition and classification. This paper suggests how image processing procedures, effective use of multiple features, and a selection of suitable classification method gives the significant improvement in the classification accuracy.

Scene classification is an important issue for many applications such as content-based image retrieval, video surveillance [1], and many multimedia applications [4]. However, it is still a challenging task to deal with outdoor scenes owing to their variability, ambiguity [2], the scale change and different illumination conditions.

In the evolution of image analysis, many features have been proposed that facilitate the recognition of the object and hence classification. The present paper illustrates literature survey held on some of the IEEE papers. The systematic survey allows exploratory analysis of the papers sample suggesting some trends for the study [3] of outdoor image characteristics.

II. LITERATURE SURVEY

2.1 The 2010-2017 Literature Survey -

All articles are selected only for outdoor scene classification as its title published from 2010 to 2017. These articles are selected from international conference and journal of Electrical and Electronics Engineers (IEEE). From the selected articles, methodology referred for outdoor scene classification has been organized in a Table 1.

Table 1 presents information about the outdoor scene understanding process applied in each paper. It includes Color space & dataset used, Descriptors/segmentation methods, Objects to recognize and features to be extracted, Classification method applied were considered.

References	Color space & dataset	Descriptors/segmentatio n method	Objects to recognize and features	Classification by
Luming Zhang et al. [1],2011	RGB histogram, SUN [10] and LHI [25]	Local descriptors, benchmark- segmentation, over- segmentation and deficient segmentation	Entire image-Global features sub-region of the image, Local features	Linear SVM, multi-class graphlet boosting algorithm,
Takayuki Baba and Tsuhan Chen [17],2010	RGB-value, color histogram, LabelMe	Multiple mage segmentations with the exemplar regions	shape, texture, color, and location, gist features [26]	SVM classifiers
Gaetan Martens et al. [16], 2010	Color, WWW	Segmentation by use of SOM	Color, edges, shape	SOM(self Organizing Map) based classification

Table 1. Literature survey 2010-2017, for outdoor scene classification

Dahua Lin, Jianxiong Xiao [19],2013	RGB color, MSRC (v2)[20], SUN [10],	Local descriptor, semantic segmentation	Noisy regions , local features	K-means ,SPM and STP for scene recognition, SVMs
R.Raja, et al. [21]	Eight scene Categories dataset, Upright vs Inverted dataset, COREL dataset	opponent color descriptor, PHOG descriptor	Low level features - color, texture and edge like features	Multiclass SVM classifier, KNN classifier
Haibing Zhang, et al. [5],2014	Luv color space, open-universe datasets	Mean shift algorithm for image segmentation [7] [8]	sky, tree, building, road and car, SIFT features	
Zheng Zhang and Huadong Ma[9],2015	LAB color space, MWI (Multiclass Weather Image)	textures/edges	Sky and shadow-Sunny features, HOG based template matching feature, snowflake noise feature –snowy feature, contrast and saturation- Global Features	KNN classifier
A. Niranjil Kumar, et al. [12], 2013	CIE (Commission International de l'Eclairage) color space , Gould data set and Berkeley segmentation data set	bottom-up segmentation	structured (buildings, persons, car, etc.) and unstructured background objects (sky, road, grass, etc.)	Background classification, initial classification map
Cewu Lu, Di Lin et al. [13],2014	C channel of LCH color space, HSV color, LAB color space ,new weather dataset –images obtained from Sun Dataset [10], Labelme Dataset [11] and Flickr.	boundary descriptors, SIFT descriptor	shiny objects , brightly- litmatte /dull object ,weather feature- weather cues (such as sky, shadow, reflection, contrast and haze), Low level features, illumination-invariant features such as SIFT or HOG	SVM classification

Table 1 cont.

References	Color space & dataset	Descriptors/segmentatio n method	Objects to recognize and features	Classification by
S. Guzmán et al.[18]	Car images	histogram of oriented gradients (HOG)	Car, HOG features [24]	SVM classifier
Tin Tin Yu and new war[15], 2017	Pedestrians, Highway, PET 2006	Segmentation mask and reference mask(ground truth)	Moving objects , HOG (Histogram of Gradient) feature	multi-support vector machine (multi-SVM)

Qiang Li et al. [14], 2016	MIT outdoor scene, PASCAL VOC 2007 and PASCAL VOC 2012, MULAN scene dataset	SIFT descriptors,	PHOW features and Deep CNN features	MLC algorithm CorrLog (correlated logistic model)
Anish Chand et al. [6], 2016	Oliva Toralba dataset from Corel stock photo Gallery		Complex Gabor filter based global features, Energy and entropy features	SVM classifier
Wei-Ta Chu et al. [4], 2016	Image2Weather dataset, EC1M dataset		Visual features and weather information, color / texture / intensity	SVM classifier, random forest classifier
Jun Chu et al. [22],2015	PH2000 and MSRC21 database	NC-SIFT, Color Multi- Directional Context SIFT	Image patch, scene objects, color feature	SVM classifier
Soltani- Sarvestani M.A. and Azimifar Zohreh [23], 2015	HIS, Lab and RGB color space, dataset of car bodies	k-means and batch k- means	areas of the image ,Bag of Features, color feature	SVM to classify colors, Kmeans and batch Kmeans, sparse coding method

IV.CONCLUSION

In this paper a detailed outdoor scene categorization is specified. Table 1 shows that number of proposals has been suggested which includes several image features for recognition of an object and hence the classification.

Studies approaching qualitative aspects of the different environmental and illumination condition are still needed. To recognize the scene, different objects are justified by its complexity while considering outdoor scene defining elements such as sky, buildings and roads, trees and plants etc. But this is a challenge that should to be faced to improve the scene classification accuracy.

V. REFERENCES

- Luming Zhang, Mingli Song, Xiaoyu Deng, Jiajun Bu and Chun Chen, "Large-scale Outdoor Scene Classification by Boosting a Set of Highly discriminative and low Redundant Graphlets" in 11th IEEE International Conference on Data Mining Workshops, 978-0-7695-4409-0/11 \$26.00 © 2011 IEEE DOI 10.1109/ICDMW.2011.108
- [2] Anna Bosch, Andrew Zisserman, and Xavier Munoz, "Scene Classification via pLSA"
- [3] P. L. Britoa, *, J. A. Quintanilhab, "A literature review, 2001-2008, of classification methods and inner urban characteristics identified in multispectral remote sensing images" in Proceedings of the 4th GEOBIA, May 7-9, 2012 Rio de Janeiro Brazil. p.586
- Wei-Ta Chu, Xiang-You Zheng, Ding-Shiuan Ding, "Image2Weather: A Large-Scale Image Dataset for Weather Property Estimation" 978-1-5090-2179-6/16 \$31.00 © 2016 IEEE DOI 10.1109/BigMM.2016.9
- Haibing Zhang, Shirong Liu and Chaoliang Zhong, "Outdoor Scene Understanding Using SEVI-BOVW Model, 978-1-4799-1484-5/14/\$31.00 ©2014 IEEE 2986
- [6] Anish Chand Turlapaty, Hema Kumar Goru and Balkrishna Gokaraju, "Gabor Filter Based Entropy and Energy Features for Basic Scene Recognition", Applied Imagery Pattern Recognition Workshop (AIPR), 2016 IEEE
- [7] Hopfield and D.W. Tank, "Computing with neural circuits: A model," Science, vol. 233, pp. 625-633, 1986.
- [8] L. Xianglu, W. Fuchao, H. Zhanyi, "Convergence of a Mean Shift Algorithm," Journal of Sojhvare, vol. 16, no. 3, pp. 265-374, 2005.
- Zheng Žhang, Huadong Ma "MULTI-CLASS WEATHER CLASSIFICATION ON SINGLE IMAGES", 978-1-4799-8339-1/15/\$31.00
 ©2015 IEEE
- [10] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.
- [11] B. Russell, A. Torralba, K. Murphy, and W. T. Freeman. Labelme: a database and web-based tool for image annotation. IJCV, 2008.
- [12] A Niranjil Kumar, M. Ilamathi, C. Jothilakshmi, and S. Kalaiselvi, "Outdoor Scene Image Segmentation using Statistical region Merging" 978-1-4673-5845-3/13/\$31.00@2013 IEEE
- [13] Cewu Lu, Di Lin, Jiaya Jia, and Chi-Keung Tang, "Two-ClassWeather Classification", 1063-6919/14 \$31.00 © 2014 IEEE DOI 10.1109/CVPR.2014.475
- [14] Qiang Li, Bo Xie, Jane You, Wei Bian, and Dacheng Tao, "Correlated Logistic Model with Elastic Net Regularization for Multilabel Image Classification" 1057-7149 (c) 2016 IEEE.
- [15] Tin Tin Yu and new war, "Condensed Object Representation with Corner HOG Features for Object Classification in Outdoor Scenes", 978-1-5090-5504-3/17/\$31.00 ©2017 IEEE SNPD 2017, June 26-28, 2017, Kanazawa, Japan

- [16] Gaetan Martens, Chris Poppe, Peter Lambert, and Rik Van de Walle, "Perceptual-Based Textures for Scene Labeling: a Bottom-Up and a Top-Down Approach", 978-1-4244-6949-9/10/\$26.00 ©2010
- [17] Takayuki Baba and Tsuhan Chen, "Object-driven image group annotation", in Proceedings of 2010 IEEE 17th International Conference on Image Processing, 978-1-4244-7994-8/10/\$26.00 ©2010
- [18] S. Guzmán1, A. Gómez1, G. Diez1, D.S. Fernández1,2, "Car Detection Methodology in Outdoor Environment Based on Histogram of Oriented Gradient (HOG) and Support Vector Machine (SVM)"
- [19] Dahua Lin ,Jianxiong Xiao, "Characterizing Layouts of Outdoor Scenes Using Spatial Topic Processes", 2013 IEEE International Conference on Computer Vision
- [20] J. Shotton, J.Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, 81(1), 2009.
- [21] R.Raja, S.Md.Mansoor Roomi, D.Dharmalakshmi, "Outdoor Scene classification using invariant features"
- [22] Jun Chu, Yongyi Zhang, Guihua Zhao & Lu Wang, "A novel scene descriptor and outdoor scene recognition method" 978-1-4673-9323 2/15 \$31.00 © 2015 IEEE, DOI 10.1109/ISKE.2015.33
- [23] Soltani-Sarvestani M.A. and Azimifar Zohreh, "Batch Color Classification using Bag of Colors and discriminative sparse coding", 978-1-4799-8445-9/15/\$31.00 ©2015 IEEE
- [24] Dalal, N., & Triggs, B. (2005, June). "Histograms of oriented gradients for human detection.", In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 886- 893). IEEE
- [25] Benjamin Yao, Xiong Yang, and Song-Chun Zhu. Introduction to a large scale general purpose ground truth dataset: methodology, annotation tool, and benchmarks. EMMCVPR, 2007.
- [26] A Oliva and A. Torralba, "Modeling the shape of the scene: a holistic representation of the spatial envelope," Intl. J. Computer Vision, 42(3), pp. 145-175, 2001.