Some Theorems In Anti S-Fuzzy Subfield Of A Field

R. Giri ${ }^{1}$, B.Ananth ${ }^{2}$
${ }^{1}$ Research Scholar, Department of R \& D, PRIST University, Vallam, Thanjavur, Tamilnadu, India.
${ }^{2}$ Assistant Professor of Mathematics, Department of Mathematics, H.H.The Rajah's College, Pudukkottai, Tamilnadu, India.

Abstract

In this paper, we made an attempt to study the algebraic nature of anti S-fuzzy subfield of a field. Keywords - S-norm, fuzzy subset, union, anti S-fuzzy subfield.

I. INTRODUCTION

After the introduction of fuzzy sets by L.A.Zadeh [11], several researchers explored on the generalization of the concept of fuzzy sets. The notion of fuzzy subgroups, anti-fuzzy subgroups, fuzzy fields and fuzzy linear spaces was introduced by Biswas.R [4, 5]. In this paper, we introduce the some theorems in anti S-fuzzy subfield of a field.

II. PRELIMINARIES

2.1 Definition: A S-norm is a binary operation $S:[0,1] \times[0,1] \rightarrow[0,1]$ satisfying the following requirements;
(i) $0 \mathrm{Sx}=\mathrm{x}, 1 \mathrm{Sx}=1$ (boundary condition)
(ii) $x S y=y S x$ (commutativity)
(iii) $x S(y S z)=(x S y) S$ (associativity)
(iv) if $x \leq y$ and $w \leq z$, then $x S m y s i z$ (monotonicity).
2.2 Definition: Let X be a non-empty set. A fuzzy subset A of X is a function $\mathrm{A}: \mathrm{X} \rightarrow[0,1]$.
2.3 Definition: The union of two fuzzy subsets A and B of a set X is defined by $(A \cup B)(x)=\max \{A(x), B(x)\}$, for all x in X .
2.4 Definition: Let ($\mathrm{F},+{ }^{-}$) be a field. A fuzzy subset A of F is said to be an anti S-fuzzy subfield (anti fuzzy subfield with respect to S-norm) of F if the following conditions are satisfied:
(i) $A(x+y) \leq S(A(x), A(y))$, for all x and y in F,
(ii) $\quad \mathrm{A}(-\mathrm{x}) \leq \mathrm{A}(\mathrm{x})$, for all x in F ,
(iii) $\quad \mathrm{A}(\mathrm{xy}) \leq \mathrm{S}(\mathrm{A}(\mathrm{x}), \mathrm{A}(\mathrm{y}))$, for all x and y in F ,
(iv) $\quad A\left(x^{-1}\right) \leq A(x)$, for all x in $F-\{0\}$, where 0 is the additive identity element of F.

III. PROPERTIES OF ANTI S-FUZZY SUBFIELDS

3.1 Theorem: If A is an anti S-fuzzy subfield of a field ($F,+, \cdot)$, then $A(-x)=A(x)$, for all x in F and $\quad A\left(x^{-}\right.$ $\left.{ }^{1}\right)=A(x)$, for all x in $F-\{0\}$ and $A(x) \geq A(0)$, for all x in F and $A(x) \geq A(1)$, for all x in F, where 0 and 1 are identity elements in F.
Proof: For x in F and 0,1 are identity elements in F. Now, $A(x)=A(-(-x)) \leq A(-x) \leq A(x)$. Therefore, $\quad A(-$ $\mathrm{x})=\mathrm{A}(\mathrm{x})$, for all x in F . And, $\mathrm{A}(\mathrm{x})=\mathrm{A}\left(\left(\mathrm{x}^{-1}\right)^{-1}\right) \leq \mathrm{A}\left(\mathrm{x}^{-1}\right) \leq \mathrm{A}(\mathrm{x})$. Therefore, $\mathrm{A}\left(\mathrm{x}^{-1}\right)=\mathrm{A}(\mathrm{x})$, for all x in $\mathrm{F}-\{0\}$. And, $\mathrm{A}(0)=\mathrm{A}(\mathrm{x}-\mathrm{x}) \leq \mathrm{S}(\mathrm{A}(\mathrm{x}), \mathrm{A}(-\mathrm{x}))=\mathrm{A}(\mathrm{x})$. Therefore, $\mathrm{A}(0) \leq \mathrm{A}(\mathrm{x})$, for all x in F . And,
$\mathrm{A}(1)=$ $\mathrm{A}\left(\mathrm{xx}^{-1}\right) \leq \mathrm{S}\left(\mathrm{A}(\mathrm{x}), \mathrm{A}\left(\mathrm{x}^{-1}\right)\right)=\mathrm{A}(\mathrm{x})$. Therefore, $\mathrm{A}(1) \leq \mathrm{A}(\mathrm{x})$, for all x in F .
3.2 Theorem: If A is an anti S-fuzzy subfield of a field $(F,+, \cdot)$, then (i) $A(x-y)=A(0)$ gives $A(x)=A(y)$, for all x and y in F ,
(ii) $A\left(x y^{-1}\right)=A(1)$ gives $A(x)=A(y)$, for all x and $y \neq 0$ in F, where 0 and 1 are identity elements in F.

Proof: Let x and y in F and 0,1 are identity elements in F. (i) Now, $A(x)=A(x-y+y) \leq S(A(x-y)$, $A(y))=S(A(0), A(y))=A(y)=A(x-(x-y)) \leq S(A(x-y), A(x))=S(A(0), A(x))=A(x)$. Therefore, $A(x)=A(y)$, for all x and y in F. (ii) Now, $A(x)=A\left(x y^{-1} y\right) \leq S\left(A\left(x y^{-1}\right), A(y)\right)=S(A(1), A(y))=A(y)$ $=A\left(\left(x y^{-1}\right)^{-1} x\right) \leq S\left(A\left(x y^{-1}\right), A(x)\right)=S(A(1), A(x))=A(x)$. Therefore, $A(x)=A(y)$, for all x and $y \neq 0$ in F.
3.3 Result: A is an anti S-fuzzy subfield of a field $(F,+, \cdot)$ if and only if $A(x-y) \leq S(A(x), A(y))$, for all x and y in F and $A\left(x y^{-1}\right) \leq S(A(x), A(y))$, for all x and $y \neq 0$ in F.
3.4 Theorem: Let A be a fuzzy subset of a field $(F,+, \cdot)$. If $A(e)=A\left(e^{1}\right)=0, A(x-y) \leq S(A(x), A(y))$, for all x and y in F and $A\left(x y^{-1}\right) \leq S(A(x), A(y))$, for all x and $y \neq e$ in F, then A is an anti S-fuzzy subfield of F, where e and e^{1} are identity elements of F.
Proof: It is trivial.
3.5 Theorem: If A is an anti S-fuzzy subfield of a field $(F,+, \cdot)$, then $H=\{x / x \in F: A(x)=0\}$ is either empty or is a subfield of F.
Proof: If no element satisfies this condition, then H is empty. If x and y in H, then $A(x-y) \leq S(A(x), A(-y))$ $=S(A(x), A(y))=S(0,0)=0$. Therefore, $A(x-y)=0$, for all x and y in F. We get $x-y$ in H. And, $A\left(x y^{-1}\right)$ $\leq S\left(A(x), A\left(y^{-1}\right)\right)=S(A(x), A(y))=S(0,0)=0$. Therefore, $A\left(x y^{-1}\right)=0$, for all x and $y \neq e$ in F. We get $x y^{-1}$ in H. Therefore, H is a subfield of F. Hence H is either empty or is a subfield of F.
3.6 Theorem: If A is an anti S-fuzzy subfield of a field $(F,+, \cdot)$, then $H=\left\{x \in F: A(x)=A(e)=A\left(e^{1}\right)\right\}$ is either empty or is a subfield of F, where e and e^{1} are identity elements of F.
Proof: If no element satisfies this condition, then H is empty. If x and y satisfies this condition, then $A(-x)$ $=A(x)=A(e)$, for all x in F and $A\left(x^{-1}\right)=A(x)=A\left(e^{1}\right)$, for all x in $F-\{e\}$. Therefore, $A(-x)=A(e)$, for all x in F and $A\left(x^{-1}\right)=A\left(e^{1}\right)$, for all x in $F-\{e\}$. Hence $-x, x^{-1}$ in H. Now, $A(x-y) \leq S(A(x), A(-y)) \leq S(A(x), A(y)) \quad=S($ $A(e), A(e))=A(e)$. Therefore, $A(x-y) \leq A(e) \cdots-\cdots(1)$. And, $A(e)=A((x-y)-(x-y)) \leq S(A(x-y), \quad A(-(x-y)))$ $\leq S(A(x-y), A(x-y))=A(x-y)$. Therefore, $A(e) \leq A(x-y) \cdots-\cdots-\cdots(2)$. From (1) and (2), we get $A(e)=A(x-y)$, for all x and y in F. Now, $A\left(x y^{-1}\right) \leq S\left(A(x), A\left(y^{-1}\right)\right) \leq S(A(x), A(y))=S\left(A\left(e^{1}\right), A\left(e^{1}\right)\right)=A\left(e^{1}\right)$. Therefore, $A\left(x y^{-1}\right)$ $\leq A\left(e^{1}\right) \cdots-\cdots(3)$. And, $A\left(e^{1}\right)=A\left(\left(x y^{-1}\right)\left(x^{-1}\right)^{-1}\right) \leq \quad S\left(A\left(x^{-1}\right), A\left(\left(x^{-1}\right)^{-1}\right)\right) \leq S\left(A\left(x y^{-1}\right), A\left(x y^{-1}\right)\right)=A\left(x y^{-1}\right)$. Therefore, $A\left(e^{1}\right) \leq A\left(x y^{-1}\right)$--------- (4). From (3) and (4), we get $A\left(e^{1}\right)=A\left(x y^{-1}\right)$, for all x and $y \neq e$ in F. Hence $A(e)=A(x-y), A\left(e^{1}\right)=A\left(x y^{-1}\right)$. We get $x-y, x y^{-1}$ in H. Hence H is either empty or is a subfield of F.
3.7 Theorem: Let A be an anti S-fuzzy subfield of a field (F,+, •). Then (i) if $A(x-y)=0$, then $A(x)=A(y)$, for x and y in F (ii) if $A\left(x y^{-1}\right)=0$, then $A(x)=A(y)$, for all x and $y \neq e$ in F, where e and e^{1} are identity elements of F.
Proof: Let x and y in F. Now, $A(x)=A(x-y+y) \leq S(A(x-y), A(y))=S(0, A(y))=A(y)=A(-y)=A(-x+x-y)$ $\leq S(A(-x), A(x-y))=S(A(-x), 0)=A(-x)=A(x)$. Therefore, $A(x)=A(y)$, for all x, y in F. And, $A(x)=A\left(x y^{-1} y\right)$ $\leq \mathrm{S}\left(\mathrm{A}\left(\mathrm{xy}^{-1}\right), \mathrm{A}(\mathrm{y})\right)=\mathrm{S}(0, \mathrm{~A}(\mathrm{y}))=\mathrm{A}(\mathrm{y})=\mathrm{A}\left(\mathrm{y}^{-1}\right)=\mathrm{A}\left(\mathrm{x}^{-1} \mathrm{xy}^{-1}\right) \leq \mathrm{S}\left(\mathrm{A}\left(\mathrm{x}^{-1}\right), \mathrm{A}\left(\mathrm{xy}^{-1}\right)\right)=\mathrm{S}\left(\mathrm{A}\left(\mathrm{x}^{-1}\right), 0\right)=\mathrm{A}\left(\mathrm{x}^{-1}\right)=\mathrm{A}(\mathrm{x})$. Therefore, $A(x)=A(y)$, for all x and $y \neq e$ in F.
3.8 Theorem: If A is an anti S-fuzzy subfield of a field $(F,+, \cdot)$, then (i) if $A(x-y)=1$, then either $A(x)=1$ or $A(y)$ $=1$, for x and y in F , (ii) if $\mathrm{A}\left(\mathrm{xy}^{-1}\right)=1$, then either $\mathrm{A}(\mathrm{x})=1$ or $\mathrm{A}(\mathrm{y})=1$, for all x and $\mathrm{y} \neq \mathrm{e}$ in F .
Proof: Let x and y in F. By the definition $A(x-y) \leq S(A(x), A(y))$, which implies that $1 \leq S(A(x), A(y))$. Therefore, either $A(x)=1$ or $A(y)=1$, for all x and y in F. And by the definition $A\left(x y^{-1}\right) \leq S(A(x), A(y))$, which implies that $1 \leq S(A(x), A(y))$. Therefore, either $A(x)=1$ or $A(y)=1$, for all x and $y \neq e$ in F.
3.9 Theorem: Let $(F,+\cdot \cdot)$ be a field. If A is an anti S-fuzzy subfield of F, then $A(x+y)=S(A(x), A(y))$, for all x and y in F and $A(x y)=S(A(x), A(y))$, for all x and y in F with $A(x) \neq A(y)$.
Proof: Let x and y belongs to F. Assume that $A(x)<A(y)$. Now, $A(y)=A(-x+x+y) \leq S(A(-x), A(x+y)) \leq$ $S(A(x), A(x+y))=A(x+y) \leq S(A(x), A(y))=A(y)$. Therefore, $A(x+y)=A(y)=S(A(x), A(y))$, for all x and y in F. And, $A(y)=A\left(x^{-1} x y\right) \leq S\left(A\left(x^{-1}\right), A(x y)\right) \leq S(A(x), A(x y))=A(x y) \leq S(A(x), A(y))=A(y)$. Therefore, $A(x y)=$ $A(y)=S(A(x), A(y))$, for all x and y in F.
3.10 Theorem: If A and B are any two anti S-fuzzy subfields of a field $(F,+, \cdot)$, then their union $A \cup B$ is an anti S fuzzy subfield of F.
Proof: Let x and y belongs to F and $A=\{\langle x, A(x)\rangle / x \in F\}$ and $B=\{\langle x, B(x)\rangle / x \in F\}$. Let $C=A \cup B$ and $C=\{$ $\langle x, C(x)\rangle / x \in F\}, C(x)=\max \{A(x), B(x)\}$. (i) $C(x-y)=\max \{A(x-y), B(x-y)\} \leq \max \{S(A(x), A(y)), S($ $B(x), B(y))\}=S(\max \{A(x), B(x)\}$, $\max \{A(y), B(y)\})=S(C(x), C(y))$. Therefore, $C(x-y) \leq S(C(x), C(y))$, for all x and y in F. (ii) $C\left(x y^{-1}\right)=\max \left\{A\left(x y^{-1}\right), B\left(x y^{-1}\right)\right\} \leq \max \{S(A(x), A(y)), S(B(x), B(y))\}=S(\max \{A(x)$, $B(x)\}$, $\max \{A(y), B(y)\})=S(C(x), C(y))$. Therefore, $C\left(x y^{-1}\right) \leq S(C(x), C(y))$, for all x and $y \neq 0$ in F. Hence $A \cup B$ is an anti S-fuzzy subfield of a field F.
3.11 Theorem: The union of a family of anti S-fuzzy subfields of a field ($\mathrm{F},+, \cdot$) is an anti S-fuzzy subfield of F .

Proof: It is trivial.

IV. REFERENCES

[1] Akram. M and Dar.K.H, On fuzzy d-algebras, Punjab University Journal of Mathematics, 37, 61-76, (2005).
[2] Anthony.J.M. and Sherwood.H, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124-130 (1979).
[3] Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
[4] Biswas.R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124 (1990).
[5] Biswas.R, Fuzzy fields and fuzzy linear spaces redefined, Fuzzy sets and systems, (1989) North Holland.
[6] Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S., A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications , 131,537-553 (1988)).
[7] Mustafa Akgul, Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133, 93-100 (1988).
[8] Mohamed Asaad, Groups and fuzzy subgroups, fuzzy sets and systems (1991), North-Holland.
[9] Prabir Bhattacharya, Fuzzy Subgroups: Some Characterizations, Journal of Mathematical Analysis and Applications, 128, 241-252 (1987).
[10] Rosenfeld. A, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
[11] Zadeh.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965).

