Some Theorems In Anti S-Fuzzy Subfield Of A Field

R. Giri¹, B.Ananth²

¹Research Scholar, Department of R & D, PRIST University, Vallam, Thanjavur, Tamilnadu, India. ²Assistant Professor of Mathematics, Department of Mathematics, H.H.The Rajah's College, Pudukkottai, Tamilnadu, India.

Abstract- In this paper, we made an attempt to study the algebraic nature of anti S-fuzzy subfield of a field. Keywords – S-norm, fuzzy subset, union, anti S-fuzzy subfield.

I. INTRODUCTION

After the introduction of fuzzy sets by L.A.Zadeh [11], several researchers explored on the generalization of the concept of fuzzy sets. The notion of fuzzy subgroups, anti-fuzzy subgroups, fuzzy fields and fuzzy linear spaces was introduced by Biswas.R [4, 5]. In this paper, we introduce the some theorems in anti S-fuzzy subfield of a field.

II. PRELIMINARIES

2.1 Definition: A S-norm is a binary operation S: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ satisfying the following requirements;

(i) 0 S x = x, 1 S x = 1 (boundary condition)

(ii) x S y = y S x (commutativity)

(iii) x S (y S z) = (x S y) S z (associativity)

(iv) if $x \leq y$ and $w \leq z,$ then $x \ S \ w \leq y \ S \ z$ (monotonicity).

2.2 Definition: Let X be a non-empty set. A fuzzy subset A of X is a function $A : X \rightarrow [0, 1]$.

2.3 Definition: The union of two fuzzy subsets A and B of a set X is defined by $(A \cup B)(x) = \max \{ A(x), B(x) \}$, for all x in X.

2.4 Definition: Let $(F, +, \cdot)$ be a field. A fuzzy subset A of F is said to be an anti S-fuzzy subfield (anti fuzzy subfield with respect to S-norm) of F if the following conditions are satisfied:

(i) $A(x+y) \le S(A(x), A(y))$, for all x and y in F,

- (ii) $A(-x) \le A(x)$, for all x in F,
- (iii) $A(xy) \le S(A(x), A(y))$, for all x and y in F,
- (iv) $A(x^{-1}) \le A(x)$, for all x in F-{0}, where 0 is the additive identity element of F.

III. PROPERTIES OF ANTI S-FUZZY SUBFIELDS

3.1 Theorem: If A is an anti S-fuzzy subfield of a field (F, +, ·), then A(-x) = A(x), for all x in F and $A(x^{-1}) = A(x)$, for all x in F-{0} and $A(x) \ge A(0)$, for all x in F and $A(x) \ge A(1)$, for all x in F, where 0 and 1 are identity elements in F.

Proof: For x in F and 0, 1 are identity elements in F. Now, $A(x) = A(-(-x)) \le A(-x) \le A(x)$. Therefore, A(-x) = A(x), for all x in F. And, $A(x) = A((x^{-1})^{-1}) \le A(x^{-1}) \le A(x)$. Therefore, $A(x^{-1}) = A(x)$, for all x in F-{0}. And, $A(0) = A(x-x) \le S(A(x), A(-x)) = A(x)$. Therefore, $A(0) \le A(x)$, for all x in F. And, $A(1) = A(xx^{-1}) \le S(A(x), A(x^{-1})) = A(x)$. Therefore, $A(1) \le A(x)$, for all x in F.

3.2 Theorem: If A is an anti S-fuzzy subfield of a field (F, +, \cdot), then (i) A(x-y) = A(0) gives A(x) = A(y), for all x and y in F,

(ii) $A(xy^{-1}) = A(1)$ gives A(x) = A(y), for all x and $y \neq 0$ in F, where 0 and 1 are identity elements in F.

Proof: Let x and y in F and 0, 1 are identity elements in F. (i) Now, $A(x) = A(x-y+y) \le S(A(x-y), A(y)) = S(A(0), A(y)) = A(y) = A(x-(x-y)) \le S(A(x-y), A(x)) = S(A(0), A(x)) = A(x)$. Therefore, A(x) = A(y), for all x and y in F. (ii) Now, $A(x) = A(xy^{-1}y) \le S(A(xy^{-1}), A(y)) = S(A(1), A(y)) = A(y) = A((xy^{-1})^{-1}x) \le S(A(xy^{-1}), A(x)) = S(A(1), A(x)) = A(x)$. Therefore, A(x) = A(y), for all x and $y \neq 0$ in F.

3.3 Result: A is an anti S-fuzzy subfield of a field $(F, +, \cdot)$ if and only if $A(x-y) \le S(A(x), A(y))$, for all x and y in F and $A(xy^{-1}) \le S(A(x), A(y))$, for all x and $y \ne 0$ in F.

3.4 Theorem: Let A be a fuzzy subset of a field $(F, +, \cdot)$. If $A(e) = A(e^1) = 0$, $A(x-y) \le S(A(x), A(y))$, for all x and y in F and $A(xy^{-1}) \le S(A(x), A(y))$, for all x and $y \ne e$ in F, then A is an anti S-fuzzy subfield of F, where e and e^1 are identity elements of F.

Proof: It is trivial.

3.5 Theorem: If A is an anti S-fuzzy subfield of a field (F, +, \cdot), then H = { x / x \in F: A(x) = 0 } is either empty or is a subfield of F.

Proof: If no element satisfies this condition, then H is empty. If x and y in H, then $A(x-y) \le S(A(x), A(-y)) = S(A(x), A(y)) = S(0, 0) = 0$. Therefore, A(x-y) = 0, for all x and y in F. We get x-y in H. And, $A(xy^{-1}) \le S(A(x), A(y^{-1})) = S(A(x), A(y)) = S(0, 0) = 0$. Therefore, $A(xy^{-1}) = 0$, for all x and $y \ne e$ in F. We get xy^{-1} in H. Therefore, H is a subfield of F. Hence H is either empty or is a subfield of F.

3.6 Theorem: If A is an anti S-fuzzy subfield of a field (F, +, ·), then H = { $x \in F$: A(x) = A(e) = A(e^1) } is either empty or is a subfield of F, where e and e¹ are identity elements of F.

Proof: If no element satisfies this condition, then H is empty. If x and y satisfies this condition, then A(-x) = A(x) = A(x), for all x in F and $A(x^{-1}) = A(x) = A(x) = A(e^1)$, for all x in F-{e}. Therefore, A(-x) = A(e), for all x in F and $A(x^{-1}) = A(e^1)$, for all x in F-{e}. Hence -x, x^{-1} in H. Now, $A(x-y) \le S(A(x), A(-y)) \le S(A(x), A(y)) = S(A(e), A(e)) = A(e)$. Therefore, $A(x-y) \le A(e) = ----(1)$. And, $A(e) = A((x-y)-(x-y)) \le S(A(x-y), A(-(x-y))) \le S(A(x-y), A(-(x-y))) \le S(A(x-y), A(-(x-y))) \le S(A(x-y), A(x-y)) = A(x-y)$. Therefore, $A(e) \le A(x-y) = ----(2)$. From (1) and (2), we get A(e) = A(x-y), for all x and y in F. Now, $A(xy^{-1}) \le S(A(x), A(y^{-1})) \le S(A(x), A(y)) = S(A(e^1), A(e^1)) = A(e^1)$. Therefore, $A(xy^{-1}) \le S(A(xy^{-1}), A(xy^{-1})) \le S(A(xy^{-1}), A(xy^{-1})) = A(xy^{-1})$. Therefore, $A(e^1) \le A(xy^{-1}) = A(xy^{-1})$. We get $x-y, xy^{-1}$ in H. Hence H is either empty or is a subfield of F.

3.7 Theorem: Let A be an anti S-fuzzy subfield of a field $(F, +, \cdot)$. Then (i) if A(x-y) = 0, then A(x) = A(y), for x and y in F (ii) if $A(xy^{-1}) = 0$, then A(x) = A(y), for all x and $y \neq e$ in F, where e and e^1 are identity elements of F.

Proof: Let x and y in F. Now, $A(x) = A(x-y+y) \le S(A(x-y), A(y)) = S(0, A(y)) = A(y) = A(-y) = A(-x+x-y) \le S(A(-x), A(x-y)) = S(A(-x), 0) = A(-x) = A(x)$. Therefore, A(x) = A(y), for all x, y in F. And, $A(x) = A(xy^{-1}y) \le S(A(xy^{-1}), A(y)) = S(0, A(y)) = A(y) = A(y^{-1}) = A(x^{-1}xy^{-1}) \le S(A(x^{-1}), A(xy^{-1})) = S(A(x^{-1}), 0) = A(x^{-1}) = A(x)$. Therefore, A(x) = A(y), for all x and $y \neq e$ in F.

3.8 Theorem: If A is an anti S-fuzzy subfield of a field (F, +, ·), then (i) if A(x-y) = 1, then either A(x) = 1 or A(y) = 1, for x and y in F, (ii) if $A(xy^{-1}) = 1$, then either A(x) = 1 or A(y) = 1, for all x and $y \neq e$ in F.

Proof: Let x and y in F. By the definition $A(x-y) \leq S(A(x), A(y))$, which implies that $1 \leq S(A(x), A(y))$. Therefore, either A(x) = 1 or A(y) = 1, for all x and y in F. And by the definition $A(xy^{-1}) \leq S(A(x), A(y))$, which implies that $1 \leq S(A(x), A(y))$. Therefore, either A(x) = 1 or A(y) = 1, for all x and $y \neq e$ in F.

3.9 Theorem: Let $(F, +, \cdot)$ be a field. If A is an anti S-fuzzy subfield of F, then A(x+y) = S(A(x), A(y)), for all x and y in F and A(xy) = S(A(x), A(y)), for all x and y in F with $A(x) \neq A(y)$.

Proof: Let x and y belongs to F. Assume that A(x) < A(y). Now, $A(y) = A(-x+x+y) \le S(A(-x), A(x+y)) \le S(A(x), A(x+y)) = A(x) \le S(A(x), A(y)) = A(y)$. Therefore, A(x+y) = A(y) = S(A(x), A(y)), for all x and y in F. And, $A(y) = A(x^{-1}xy) \le S(A(x^{-1}), A(xy)) \le S(A(x), A(xy)) = A(xy) \le S(A(x), A(y)) = A(y)$. Therefore, A(xy) = A(y) = S(A(x), A(y)), for all x and y in F.

3.10 Theorem: If A and B are any two anti S-fuzzy subfields of a field (F, +, \cdot), then their union A \cup B is an anti S-fuzzy subfield of F.

Proof: Let x and y belongs to F and A = { $\langle x, A(x) \rangle / x \in F$ } and B = { $\langle x, B(x) \rangle / x \in F$ }. Let C = A \cup B and C = { $\langle x, C(x) \rangle / x \in F$ }, C(x) = max { A(x), B(x) }. (i) C(x-y) = max { A(x-y), B(x-y) } \le max { S(A(x), A(y)), S(B(x), B(y)) } = S(max { A(x), B(x) }, max{A(y), B(y)}) = S(C(x), C(y)). Therefore, C(x-y) \le S(C(x), C(y)), for all x and y in F. (ii) C(xy⁻¹) = max { A(xy⁻¹), B(xy⁻¹) } \le max { S(A(x), A(y)), S(B(x), B(y)) } = S(max { A(x), B(x) }, max{A(y), B(xy⁻¹) } \le max { S(C(x), C(y)), for all x and y \neq 0 in F. Hence A \cup B is an anti S-fuzzy subfield of a field F.

3.11 Theorem: The union of a family of anti S-fuzzy subfields of a field ($F, +, \cdot$) is an anti S-fuzzy subfield of F. Proof: It is trivial.

IV. REFERENCES

- [1] Akram. M and Dar.K.H, On fuzzy d-algebras, Punjab University Journal of Mathematics, 37, 61-76, (2005).
- [2] Anthony.J.M. and Sherwood.H, Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69,124 -130 (1979).
- [3] Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications, 35, 512-517 (1971).
- [4] Biswas.R, Fuzzy subgroups and Anti-fuzzy subgroups, Fuzzy sets and systems, 35,121-124 (1990).

- [5] Biswas.R, Fuzzy fields and fuzzy linear spaces redefined, Fuzzy sets and systems, (1989) North Holland.
- [6] Choudhury.F.P. and Chakraborty.A.B. and Khare.S.S., A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications ,131 ,537 -553 (1988).
- [7] Mustafa Akgul, Some properties of fuzzy groups, Journal of mathematical analysis and applications, 133, 93-100 (1988).
- [8] Mohamed Asaad, Groups and fuzzy subgroups, fuzzy sets and systems (1991), North-Holland.
- [9] Prabir Bhattacharya, Fuzzy Subgroups: Some Characterizations, Journal of Mathematical Analysis and Applications, 128, 241-252 (1987).
- [10] Rosenfeld. A, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512-517.
- [11] Zadeh.L.A, Fuzzy sets, Information and control, Vol.8, 338-353 (1965).