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Abstract: In this paper, we give an overview of plane partitions and partitions with n copies of n. We also explain a 

bijection between these two types of partitions using Agarwal’s version of Bender and Knuth bijection (Bender and 

Knuth, J. Combin. Theory (A), 13, 1972, 40-54). Using this bijection, we show how self-conjugate partitions with n 

copies of n gives us a new class of plane partitions. We also obtain the corresponding associated lattice paths. 

 

I. INTRODUCTION 

The theory of partitions has an interesting history. Certain problems in partitions certainly date back to middle 

ages. The foundation of partitions was laid by Leonard Euler in 18th century. Many other renowned 

mathematicians Cayley, Gauss, Jacobi, Schur and MacMahon later worked in this area. Plane partitions are 

generalization of ordinary partitions of integers introduced by P.A. MacMahon [9]. On the other hand partitions 

with n copies of n were defined by Agarwal and Andrews. Since both plane partitions and partitions with n copies 

of n have same generating function, there is scope of direct bijection between these two types of partitions.  
Various tools have been used from time to time to study the plane partitions. One of these is Schensted 

correspondence between matrices and plane partitions which was extended by Knuth and later used by Bender and 
Knuth [2]. They used this correspondence to prove some new results. Much later, Agarwal established a 
correspondence between Bender Knuth matrices and partitions with n copies of n. This lead to a double bijection 
between plane partitions and partitions with n copies of n. 

Agarwal Bender-Knuth bijection is a great tool to study plane partitions with the help of advancements in the 
study of partitions with n copies of n. Many known results for partitions with n copies of n have been interpreted 
for plane partitions using this bijection. 

II. BASIC DEFINITIONS 

The word partition has numerous meanings in Mathematics. Anytime a division of some object into sub objects 

is undertaken, the word partition is likely to pop up. Formally, we define a partition of a positive integer as follows: 

Definition 2.1 Partition: (Euler) A partition λ of a positive integer 𝜈 is defined as a finite sequence of positive 

integers λ 1, λ 2, .... λ r arranged in non-increasing order λ 1 ≥ λ 2 ≥ .... ≥ λr such that 𝜈 = λ 1 + λ 2 + .... + λr   

where λ 1, λ 2, ...., λ r are called parts of the partition λ of 𝜈.  

For example, 3+2+1 is a partition of 6. 

Definition 2.2 Plane Partition: Plane Partition (Macmahon, [9]). A plane partition of a positive integer ν is an 

array of non-negative integers. 

 

n11 n12 n13 ··· 

n21 n22 n23 ··· 

... ... ...  

 

for which ∑ 𝑛𝑖𝑗

𝑖,𝑗

= 𝜈 

and rows and columns are in non-increasing order. 

Definition 2.2 Shape of a plane partition [11]: If in a plane partition π of a positive integer ν, there are λi  parts 

in the ith row of π so that, for some r, λ1 ≥ λ2 ≥ λ3 ... ≥ λr > λr+1 = 0, then we call the partition λ1 ≥ λ2 ≥ λ3 ... ≥ λr of 

the integer p = λ1 + λ2 + λ3 ... + λr , the shape of π. 

If the non-zero entries of a plane partition π are strictly decreasing in each column (row), we say that π is a column 

(row) strict plane partition. 
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If in a plane partition π, (i,j)th entry is same as the (j,i)th ∀ i, j,  it is called a symmetric plane partition. 

Definition2.3 Partitions with n copies of n [5]. Partitions with n copies of n (also called n-colour partitions) 

introduced by Agarwal and Andrews in 1987 are defined as follows:  

 A partition with n copies of n (also called n-colour partition) is a partition in which a part of size n, n ≥ 0 can 

come in n different colors denoted by subscripts: n1, n2, .... nn. 

For example, Partitions of 3 with n copies of n are: 31, 32, 33, 22 + 11, 21 + 11, 11 + 11+ 11 

Definition2.4 Conjugate of an n- colour partition [7]. Let π = (a1) b1 + (a2) b2 + ··· + (ar) br be an n-colour 

partition of 𝜈. We call (ai) ai-bi+1 the conjugate of (ai) bi. 

An n-colour partition of 𝜈 obtained from π by replacing each of its parts by its conjugate will be called the 

conjugate of π and is denoted by πc. 

For example, 3311 is conjugate of the partition 3111 of the integer 4. 

Definition2.5 Self Conjugate Partition. An n-colour partition π is said to be self-conjugate if it is identical with 

its conjugate πc. 

In [5], it was shown that if P(ν) denotes the number of n-colour partitions of ν, then 

                   1 +  ∑ 𝑃(𝜈)q𝜈 ∞
𝜈=1 =  ∏ (1 − 𝑞𝑛 )−𝑛∞

𝑛=1                                                                            

 

Since the right-hand side of above equation is the generating function for the plane partitions also, this implies 

that the number of n-colour partitions of ν equals the number of plane partitions of ν. 

 

III. BIJECTION BETWEEN PLANE PARTITIONS AND N-COLOUR PARTITIONS 

 

3.1 Bender Knuth Bijection 

In the 1960s, a correspondence between certain matrices and plane partitions was developed by Schensted and 

later extended by Knuth. This combinatorial mapping allowed a great simplification in the deduction of many 

known restricted plane partition generating functions. Furthermore, many new generating functions can be treated 

using this process. 

Agarwal [3] established a bijection ψ. φ between n-color partitions and plane partitions. For the clarity of our 
presentation, we shall first reproduce the bijection ψ.φ here. In ψ.φ, φ is due to Bender and Knuth [8] and is the 1- 
1 correspondence of the following theorem: 

Theorem3.1.1There is one to one correspondence between 

1. the set of k x k matrices with non-negative integer entries 

2. the set of all lexicographically ordered sequences of ordered pairs of integers, each ≤ k 

3. the set of ordered pairs (π1, π2) of column strict plane partitions of same shape in which each entry doesn’t 

exceed k. 

Note that the correspondence described in Theorem 3.1 produces a one-to-one correspondence between 
symmetric matrices A of non-negative integers and plane partitions π with strict decrease along columns. 

A different version of this theorem is also found in literature (cf. Stanley [12, 7.20]). 

Theorem (Bender and Knuth). There is one to one correspondence between plane partitions of ν, on the one hand, 

and infinite matrices ai,j (i,j ≥ 1) of non-negative integer entries which satisfy 

∑ { ∑ 𝑎𝑖𝑗

𝑖+𝑗=𝑟+1

}

𝑟≥1

= 𝜈 

on the other. 

In the sequel, we shall call images φ (π) BKν- matrices (B for Bender and K for Knuth).  
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Although, these matrices are infinite matrices, but we represent them by largest possible square matrices 

containing at least one non-zero entry in the last row (or in the last column). 

Thus, for example, we’ll represent six BK3- matrices by 

 

 

3 , 1 0 , 1 1 , 0 0 , 0 0 1 , 0 0 0 

  1 0  0 0  0 1  0 0 0  0 0 0 

           0 0 0  1 0 0 

3.2 Agarwal’s Double Bijection  

Definition3.2.1 (Agarwal) Define a matrix Ei, j as an infinite matrix whose (i, j)th entry is 1 and the other entries 

are all zeros. We call Ei, j distinct parts of a BKν- matrix. 

Now we define the mapping ψ as follows: 

Let ∆ = a11E1,1 + a12E1,2 + . . . + a21E2,1 + a22E2,2 + . . . 

be a BKν- matrix where aij are non-negative integers which denote the multiplicities of Ei, j. 

We map each part Ep, q of ∆ to a single part mi of an n-colour partition of ν. The map denoted by ψ is defined as 

ψ: Ep, q → (p + q − 1)p,  (3.2.1) 

and the inverse mapping ψ−1 is easily seen to be 

ψ−1: mi → Ei, m−i+1.  (3.2.2) 

Under this mapping, we see that each BKν matrix uniquely corresponds to an n-colour partition of ν and vice 

versa.  

The composite of two mappings φ and ψ denoted by ψ.φ is clearly a bijection between plane partitions of ν on 

one hand, and n-colour partitions of ν, on the other. 

For example,  

n-colour partitions of 

4 

BK4 Matrices Pair of Plane Partitions Corres. Plane partition of 4 

41 E1,4 4, 1 4 

42 E2,3 3, 2 3 

1 

43 E3,2 2, 3 2 

1 

1 

44 E4,1 1, 4 1 

1 

1 

1 

3111 E1,3 + E1,1 3 1, 1 1 3  1 

3211 E2,2 + E1,1 2 1, 2 1 2  1 

1 

3311 E3,1 + E1,1 1 1, 3 1 1  1 

1 

1 

2121 E1,2 + E1,2 2 2, 1 1 2  2 

2221 E2,1 + E1,2 2 , 2 

1   1 

2 

2 

2222 E2,1 + E2,1 1 1, 2 2 1  1 

1  1 

211111 E1,2 + E1,1 + E1,1 2 1 1, 1 1 1 2  1  1 

221111 E2,1 + E1,1 + E1,1 1 1 1, 2 1 1 1  1  1 

1 

11111111 E1,1 + E1,1 + E1,1 + E1,1 1 1 1 1, 1 1 1 1 1  1  1  1 
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We shall use this double bijection to between plane partitions and partitions with n copies of n to prove the results 

in the next section. 

Next, we recall the following description of associated lattice paths defined by Anand and Agarwal [4]. 

All paths are of finite length lying in the first quadrant. They will begin on the y- axis and terminate on the x- axis. 

Only three moves are allowed at each step. 

northeast: from (i, j) to (i + 1, j + 1),  

southeast: from (i, j) to (i + 1, j − 1), only allowed if j > 0,  

horizontal: from (i, j) to (i + 1, j), only allowed when the first step is preceded by a northeast step and the last is 

followed by a southeast step. 

The following terminology will be used in describing associated lattice paths: 

Truncated Isosceles Trapezoidal Section (TITS): A section of path which starts on x-axis with northeast steps 

followed by horizontal steps and then followed by southeast steps ending on x-axis forms what we call a Truncated 

Isosceles Trapezoidal Section. 

Since the lower base lies on x-axis and is not a part of the path, hence the term truncated. 

Slant Section (SS): A section of path consisting of only southeast steps which starts on the y-axis (origin not 

included) and ends on the x-axis.  

Height of a slant section is ‘t’ if it starts from (0,t). Clearly, a path can have an SS only in the beginning. 

A lattice path can have at most one SS. 

Weight of a TITS: To define this, we shall represent every TITS by an ordered pair {a,b} where a denotes its 

altitude and b the length of the upper base. 

Weight of the TITS with ordered pair {a,b} is a units. 

Weight of a lattice path is the sum of weights of its TITSs.  

Slant Section is assigned weight zero.  

For example, in Figure 1, the associated lattice path has one SS of height 1 and one TITS with ordered pair {2, 3} 

and its weight is 2 units. 

 

 

Fig: 1 

 

IV. A NEW CLASS OF SELF-CONJUGATE N-COLOUR PARTITIONS 

We shall prove the following result: 

Theorem 4.1.1 Let P(ν) denote the number of self-conjugate partitions of ν with n copies of n of the form 

 

∑(𝑎𝑖̇)𝑏𝑖

𝑖

 

such that a1 > a2 >a3 > ......... >ar.  

Let Let Q(ν) denote the number of plane partitions of ν of the form 
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π = l11 l12 ··· 

 l21 l22 ··· 

 . 
. 
. 

. 

. 

. 
 

such that 

a) l1j = bj ∀ 1 ≤ j ≤ r and 

b) lij = 1 ∀ 2 ≤ i ≤ bj  and ∀ 1 ≤ j ≤ r 

Then, P(ν)= Q(ν) ∀ ν. 

For example, for ν= 6, P(6) = 1, as the only self-conjugate n-colour partition enumerated by P(6) is 5311 

Also, Q(6) = 1, as the only plane partition enumerated by Q(6) is  

 

Hence, P(6) = Q(6) = 1 

Proof: Let w = (a1) b1 + (a2) b2 + ··· + (ar) br be an n-colour partition enumerated by P(ν), that is, 

a1 > a2 > a3 > ......... > ar. 

Now as w is a self-conjugate partition with all parts distinct. Thus, each part (ai) bi = (ai) ai – bi + 1. Therefore, 

corresponding BKν- matrix is 

Δ = 𝐸𝑏1,𝑎1−𝑏1+1 + 𝐸𝑏2,𝑎2−𝑏2+1 + ⋯ + 𝐸𝑏𝑟,𝑎𝑟−𝑏𝑟+1 

i.e. 

Δ = 𝐸𝑏1,𝑏1
+ 𝐸𝑏2,𝑏2

+ ⋯ + 𝐸𝑏𝑟,𝑏𝑟, 

 

 

Also, bi =ai – bi + 1 

i.e. 2bi =ai + 1 which implies bi =(ai + 1)/2. 

Now as a1 > a2 >a3 > ......... >ar 

Hence, (a1 + 1)/2 >( a2 + 1)/2 >(a3 + 1)/2 > ......... > (ar+ 1)/2 

i.e. b1 >b2 >b3 > ......... >br. 

This BKν- matrix corresponds to pair of sequences 

 b1 b2 . . . br 

  b1  b2 . . .  br 

This pair of sequences corresponds to pair of column strict plane partitions (π1, π2) of same shape. The lower 

sequence corresponds to π1 and upper sequence corresponds to π2. Since the lower sequence is non-increasing, 

 π1=  b1  b2  . . . br  

and π2 is of same shape. So π2= b1 b2 . . . br. 

This pair (π1, π2) corresponds to plane partition 

 

 

where l1j = bj ∀ 1 ≤ j ≤ r and lij = 1 ∀ 2 ≤ i ≤ bj  and ∀ 1 ≤ j ≤ r. 

Hence, proved. 

3 1 

1  

1  

π = l11 l12 ··· 

 l21 l22 ··· 

 . 
. 
. 

. 

. 

. 
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Corollary4.1: The plane partitions enumerated by Q(ν) above are such that each column of this partition is a self-

conjugate partition considered as ordinary partition. 

 

For example, the partition enumerated by Q(6) is 

 

 

The first column corresponds to ordinary partition 3+1+1 which is a self-conjugate partition as can be seen using 

Ferrers graph 

Also, second column corresponds to ordinary partition 1 which is also a self-conjugate partition. 

For the next result, we define the following: 

Definition 2.1 The mass of any TITS with ordered pair {a, b} is defined to be a - b. 

Definition 2.1 The base of any TITS with ordered pair {a, b} is defined to be b. 

The next result gives us three-way correspondence. 

Theorem 4.1.2 Let R (ν) denote the number of associated lattice paths of weight ν such that 

(a.) For any TITS with ordered pair {a,b}, b doesn’t exceed a. 

(b.) TITS are arranged in order of non-decreasing weights. 

(c.) there is no SS 

(d.) if weight of a TITS is greater than the other TITS, then its base is greater than the base of the other. 

(e.) Base of each TITS is one greater than its mass. 

Then P(ν)= Q(ν) = R(ν) ∀ ν. 

Proof of the Theorem: Consider an n-colour partition enumerated by P(ν). Each part ab of n-colour partition 

corresponds to a TITS with ordered pair {a, b}. As in n color partition b can’t exceed a hence, for any TITS with 

ordered pair {a, b}, b doesn’t exceed a. 

Since n-colour partition is self-conjugate, therefore, bi =ai – bi + 1for each part (ai) bi 

So, in the corresponding TITS, we get that the base is one greater than its mass. 

This gives a one-to-one correspondence between partitions enumerated by P(ν) and associated lattice paths 

enumerated by R(ν). 

Combining with previous theorem we establish a three-way identity P(ν)= Q(ν) = R(ν) ∀ ν. 

Hence, proved. 

V. CONCLUSION  

Theorem 4.1.1 gives us a direct correspondence between a class of column wise, self-conjugate plane partitions 

of an integer ν and a class of self-conjugate partitions with n copies of n of the integer ν. Also, since partitions 

with n copies of n have a lattice path representation. So, we obtain a lattice path representation for a class of 

restricted plane partitions. We hope to interpret other definitions of conjugacy of plane partitions to n- colour 

partitions. 
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