
International Journal of New Innovations in Engineering and Technology

Volume 7 Issue 2– March 2017 19 ISSN: 2319-6319

Framework for Preventing Deadlock : A

Resource Co-allocation Issue in Grid

Environment

Dr. Deepti Malhotra
 Department of Computer Science and Information Technology

Central University of Jammu, Jammu, J&K, India

Abstract- In distributed environments, like Grid multiple resources are shared over the network in order to accomplish

various tasks. However, to optimize the network performance and to complete the jobs successfully, these resources need

to be used efficiently and effectively. Computational Grids have the potential for solving large-scale scientific problems

using heterogeneous and geographically distributed resources. Due to the lack of centralized control and the dynamic

nature, availability of the resource is very difficult. One problem that is critical to the effective utilization of

computational Grids and gives a certain Quality of Service (QoS) for Grid users is the efficient co-allocation of jobs.

Resource Co-allocation is fundamental to Grid computing. In the Grid computing community, the term co-allocation

usually refers to the simultaneous access to resources hosted by autonomous providers. Resource Co-allocation involves

the interaction of multiple entities, namely clients and resource providers. Multiple clients may ask for resources at the

same time from the same providers. This situation may generate deadlocks if the resource providers use a locking

procedure or if time out is associated with the locks. The aim of research paper is to design an efficient and effective

framework to handle the distributed transactions in order to prevent deadlock and to ensure that all the resources

available in the Grid are effectively utilized.

Keywords – Grid Computing, Resource Co-allocation, Deadlocks, ODP

I. INTRODUCTION

One of the promises of Grid Computing is to enable the execution of applications across multiple sites. Some of

these applications require coordinated access to resources managed by autonomous entities. This coordinated access

is known as resource co-allocation. There are two main classes of applications that require resource co-allocation:

parallel applications with inter-process communication, and workflow applications. Parallel applications with inter-

process communication require all resources to be available at the same time, whereas workflows constitute the

execution of tasks with precedence constraints, i.e. resources have to be available in a certain order. Although both

application classes require co-allocation, in the Grid computing community, the term co allocation usually refers to

the simultaneous access to resources hosted by autonomous providers.

A number of distributed applications require simultaneous access to resources located in multiple administrative

domains. In order to co-allocate resources in these environments, users need to reserve them in advance to

meet their expected Quality of Service and enhance utility of their applications. Resource providers must

frequently update their scheduling queues to reduce turnaround time of user requests and increase resource

utilization. However, as all sub-requests of a co-allocation request must start at the same time, any modification in a

single site may affect the requests of other sites. Due to the management complexity of resource co-allocation

requests, their current usage is based on static advance reservations, which results in a low system

utilization. There are a number of applications, in both academic and commercial environments, that require

resource co-allocation. Some examples are (i) applications that require computing power that is not available in

a single site; (ii) applications that require different resource types that are not available in a single site;

(iii) users who need to speed up the execution of their applications; and (iv) redundancy of resources to improve

fault tolerance during an execution. In resource management policies, the large scale parallel applications require

multiple supercomputers to deal with problems such as splitting the application according to resource

availability, performing the rescheduling when there are updates in the scheduling queues and keeping

synchronized the co-allocation requests in the different resource providers.

To take full advantage of the promising capabilities of Grid computing, good resources co-allocation schemas

must be developed. Compared to the resources allocation in traditional distributed systems, resources co-allocation

in the Grid must consider the characteristics of users and the nature of resources, making the design of a co-

allocation system very complicated [1]. Sometimes, the needs of a single job may exceed the capacity available in

International Journal of New Innovations in Engineering and Technology

Volume 7 Issue 2– March 2017 20 ISSN: 2319-6319

each of the subsystems making up a Grid, and so co-allocation [2] (i.e. the simultaneous access to resources of

possibly multiple types in multiple locations managed by different resource managers or locals scheduler) may be

required.

The two main reasons for executing applications on multiple sites are: (i) the lack of special resources in a single

administrative domain, such as devices for generating data, visualization tools, and supercomputers; and (ii)

reduce response time of parallel applications by increasing the number of resources [2]. However, there are

other applications that require co-allocation. Conference and multimedia users engaged in activities, such as

scientific research, education, commerce, and entertainment, require co-allocation of multiparty real-time

communication channels [3].Data-intensive applications use co-allocation to collect data from multiple sources

in parallel [4] In addition, increasing the number of resources is a requirement of large-scale applications

demanding considerable amounts of memory, storage, and processing power.

The rest of the paper is organized as follows. Resource co-allocation issues are explained in section II. Section III

shows some interesting results from the previous research on resource co-allocation protocols. Section IV provides

the details of the proposed deadlock prevention. Section V provides the results of the experiment carried out using

our own grid simulated environment. Finally Section VI concludes the paper by summarizing the contributions and

future works.

II. RESOURCE CO-ALLOCATION ISSUES

Existing work on resource co-allocation have focused on four research problems: distributed transactions, fault

tolerance, inter-site network overhead, and schedule optimization. Resource co-allocation involves the

interaction of multiple entities, namely clients and resource providers. Multiple clients may ask for resources at the

same time from the same providers. This situation may generate deadlocks if the resource providers use a locking

procedure; or livelock if there is a timeout associated with the locks. Therefore, there has been research on protocols

to handle distributed transactions in order to avoid deadlocks and livelocks, and minimize the number of messages

during these transactions. Deadlocks are important resource management problem in distributed systems because it

can reduce the throughput by minimizing the available resources. In distributed systems, a process may request

resources in any order, which may not know a priori, and a process can request a resource while holding others. If

the allocation sequence of process resources is not controlled in such environments, deadlock can occur.

Another common problem in the resource co-allocation field is that a failure in a single resource

compromises the entire execution of an application that requires multiple resources at the same time. One

approach to minimize this problem is defining a fault tolerance strategy that notifies applications of a problem with a

resource.

III. BACKGROUND AND RELATED WORK

Resource co-allocation to tasks is an important problem for Grid computing systems. As an effective solution, agent

coalition formation had become a research hotspot [5]. A resource allocation strategy via agent coalition formation

for real-time, dynamic, time-bounded Grid computing systems is presented. A scalable, decentralized resource co-

allocation protocol that can facilitate the dependable deployment of Internet applications is presented in [6-7]. In this

research, the proposed order-based deadlock prevention protocol with parallel requests (ODP3) protocol ensures

deadlock and live-lock freedom during the resource co-allocation process. At the same time, the protocol takes

advantage of parallelism in making resource allocation requests in order to achieve increased efficiency. ODP3

protocol requires the use of parallel requests feature, a set of goal states associated to each job in which achieving

one of the goals satisfies the condition to run the corresponding job.

In contrast to ODP3, ODP2 does not require using parallel requests .To prevent deadlock and to reduce the

degree of starvation of resource allocation, this protocol was proposed in expense of some global assumption:

distinct resources need to be globally ordered. This assumption makes this protocol neither scalable nor fully

decentralized to some extent. This protocol simply applies a multiple requests feature to globally linear ordered

resources [8]. The order-based deadlock prevention protocol (ODP2) requires each job (or the corresponding co-

allocator) to secure its resources one by one in an increasing order according to the given global order. Once all

resources are allocated the job starts running. This protocol is deadlock-free, starvation-free and livelock-free. The

weak points in this protocol are: resource usability, scalability, and central point of failure - a central node is

required to keep global order among resources.

In article [9], Qi Chao et al. proposed an improved ant colony system (ACS) based algorithm, which efficiently

solve the deadlock problem of tasks that the interdependence between tasks fails to consider during the course of

resource assignment and task scheduling based on the general heuristics algorithm.

International Journal of New Innovations in Engineering and Technology

Volume 7 Issue 2– March 2017 21 ISSN: 2319-6319

Agent-based resources co-allocation in Grid computing [10] had been introduced where a set of co-allocators agents

receive jobs from multiple Grid users and use some techniques to schedule the job to one or more resources agent.

The objectives of introducing these co-allocation strategies are as follows: (i) improve users benefit by minimizing

their job’s execution time and waiting time; (ii) improve resources benefit by maximizing theirs utilization rate. We

assume that the co-allocation model is non-preemptive, and all the jobs are independent.

IV. PROPOSED DEADLOCK PREVENTION ALGORITHM

The Algorithm that we are proposing and trying to implement is based on the idea of No-preemption for deadlock

prevention, existence of deadlocks in a smaller network could be overcome easily, but if we are dealing with a Grid

environment, it could be technically and economically infeasible to deal with such a situation. That will in turn

result into the blockage of Network packets in and around the network. In a distributed environment, resources as

well as processes are geographical distributed. A process requests the resources; if the resources are not available at

that time, the process enters into a wait state. Waiting processes may never again change state, because the resources

they have requested are held by some other waiting processes. So our algorithm may provide a provision for

efficient allocation of resources such that deadlocks never occur in a grid environment.

The simulation experiment provides us of a general idea how this could be realized for a Grid Environment. Our

algorithm relates to allocation of resources by following the three protocols of no preemption condition for deadlock

prevention and following those three protocols step by step allocation of resources as per the protocols. Number of

processes and number of resources to be allocated as input by the user are arranged in the form of a matrix of

processes and available resources. Similarly, resources to be allocated to a process or processes are again arranged in

a matrix form. The algorithm restricts the occurrence of deadlock by considering the constraints of the program.

The proposed algorithm prevent deadlock in Grid environment by considering no preemption condition. Grid is a

collection of large database and it is prone to deadlock. In grid environment the resources as well as processes are

geographically distributed. The deadlock prevention algorithm work as:

1) if demand is less than availability then the resources are allocated.

2) if demand is greater than availability then two conditions arises-

a) if a process is holding some resources and request a resource which is held by some other process, then all

the resources currently held are preempted. The pre-empted resources are added to the list of resources for

which the process is waiting. The process will restart again only if it regains its old resources, as well as

the new ones that it is requesting.

b) if the resources are neither available nor held by a waiting process, the requesting process must wait.

While it is waiting, some of its resources may be preempted, but only if another process requests them. A

process can be restarted only when it allocated the new resources it is requesting and recovers any

resources that were preempted while it was waiting

This algorithm ensures that resources are allocated to a process for a time span to avoid occurrence of deadlock. For

example if the time span is 10s then it is available to the process for 10 seconds. After 10 sec it is available to

another requesting process.

4.1 Assumptions of Algorithm

1) Number of processes-10 for easy understanding

2) Number of resources-6

3) Consider only 3 conditions of no pre-emption protocol that is-

a) If a process requests some resources, we first check whether they are available. If they are, we allocate

them. If they are not, we check whether they are allocated to some other process that is waiting for

additional resources. If so, we preempt the desired resources from the waiting process and allocate them to

the requesting process.

b) If a process is holding some resources and request a resource which is held by some other process, then

all the resources currently held are pre-empted. The pre-empted resources are added to the list of

resources for which the process is waiting; the process will restart again only if it regains its old resources,

as well as the new ones that it is requesting.

c) If the resources are neither available nor held by a waiting process, the requesting process must wait.

While it is waiting, some of its resources may be preempted, but only if another process requests them. A

process can be restarted only when it allocated the new resources it is requesting and recovers any

resources that were preempted while it was waiting.

International Journal of New Innovations in Engineering and Technology

Volume 7 Issue 2– March 2017 22 ISSN: 2319-6319

4) Input only integer values.

5) Message, unsafe state if there is chance of deadlock.

4.2 Flowchart

Figure1: Flowchart of Deadlock Prevention Algorithm

4.3 Pseudocode

As per flowchart

1) We assume number of processes not to exceed 10.

2) Also, the number of resources must not exceed 6, if either the number of processes or resources exceeds this

limit, there will be an warning message.

3) Initialize the variables DEM and AVAIL equal to zero initially, which means that initially there is no process in

the system and also no resource present.

4) The user inputs the number of processes and the number of resources as per his choice; firstly the resources are

allocated as per the FCFS scheduling criteria fulfilling the demand of requested resources by processes if they

International Journal of New Innovations in Engineering and Technology

Volume 7 Issue 2– March 2017 23 ISSN: 2319-6319

are available in the system. These processes are executed and results are retrieved with the release of held

resources.

5) Secondly if the demand DEM is less than the number of available resources AVAIL, 2 cases arise.

5(a) A process is holding some resources and request a resource which is held by some other process, then all

the resources currently held are pre-empted, it may be restarted only it receives back its pre-empted

resources as well the resources it demanded. It is reallocated resources and it follows the steps as the

previous case 4.

5(b) The resources are neither available nor held by any waiting process, the process requesting for more

resources has to wait and Consequently, some of its resources get pre-empted, if some other process

requests resources of that type. This process could be restarted only it receives back its pre-empted

resources as well as the resources it demanded. It is reallocated resources and it follows the steps as the

previous case 5(a).

6) The released resources after process completion are maintained in the list.

7) The output is analyzed as per the requirements and set of constraints, if it fulfils the criteria, the results are kept

or it goes back to STEP 4.

8) Again the same procedure is followed for next allocation.

9) Outputs matrices are displayed for different matrices and it is indicated which process completes execution and

its resources are sent back to resource table.

10) The output claim matrix and allocation matrix marks the end of simulation run.

V. EXPERIMENT DETAILS AND RESULT

5.1 Simulation test bench

In our proposed model, we have done coding using C platform to have a better understanding of the various steps of

the program. The Processor used is AMD A6-3420M APU. Operating system used is 64-bit Windows 7 with 4 GB

RAM. We have a constraint for the maximum number of processes, It must be less than or equal to 10. And a

constraint for the maximum number of resources, it must be less than or equal to 6.And this program code had been

run in the main lab of the University as well as on our personal systems.

5.2 Snapshots

Snapshot 1(a)

Snapshot 1(b)

International Journal of New Innovations in Engineering and Technology

Volume 7 Issue 2– March 2017 24 ISSN: 2319-6319

Snapshot 2(a)

Snapshot 2(b)

Snapshot 2(c)

Snapshot 3(a)

Snapshot 3(b)

VI. CONCLUSION AND FUTURE SCOPE

Experience shows that the co-allocation of multiple resources is a challenging problem in Grid environments, due to

application requirements for multiple resources and the inherent unreliability of the resources in question. Resource

Co-allocation is fundamental to Grid computing. In the Grid computing community, the term co-allocation usually

refers to the simultaneous access to resources hosted by autonomous providers. Resource Co-allocation involves the

interaction of multiple entities, namely clients and resource providers. Multiple clients may ask for resources at the

same time from the same providers. This situation may generate deadlocks if the resource providers use a locking

procedure or if time out is associated with the locks. Deadlocks are one of those parameters and its hazards are very

costly and time effective to recover. So, as it is quoted “Prevention is better than cure’’. A novel deadlock

prevention algorithm with the emergence of Grid computing has been presented in this paper with the objective to

preserve the data consistency and increase the throughput by maximizing the availability of resources and to ensure

that all the resources available in the Grid are effectively utilized. The proposed algorithm can subtly assign the

International Journal of New Innovations in Engineering and Technology

Volume 7 Issue 2– March 2017 25 ISSN: 2319-6319

appropriate resources to tasks that exactly satisfy the needs of tasks. The work implements a simulation, and thus

there is a need to validate the results obtained through hardware based system within the proposed indoor

environment.

REFERENCES

[1] H. Blanco, J. Lrida, F. Cores, and F. Guirado, “Multiple job co-allocation strategy for heterogeneous multi-cluster systems based on linear

programming,” The Journal of Supercomputing, pp. 1–9, 2011.

[2] K. Czajkowski, I. Foster, and C. Kesselman, “Resource co-allocationin computational grids,” in HPDC ’99: Proceedings of the 8th IEEE

International Symposium on High Performance Distributed Computing.IEEE, Computer Society, 1999, p. 37

[3] D. Ferrari, A. Gupta, and G. Ventre, “Distributed advance reservation of real-time connections”,ACM/Springer Verlag Journal on
Multimedia Systems, 5(3), 1997.

[4] Rajkumar Buyya, Marco A. S. Netto ,“Resource Co-Allocation in Grid Computing Environments”,IGI Global,2012.

[5] H.-J. Zhang, Q.-H. Li, and Y.-L. Ruan, “Resource coallocation via agent-based coalition formation in computational grids”, International

Conference on Machine learning and Cybernetics, 3:1936–1940, November 2003.

[6] J. Park, “A scalable protocol for deadlock and livelock free co-allocation of resources in internet computing”, Proceedings of the
Symposium on Applications and the Internet, 27(31):66–73, January 2003.

[7] J. Park, “A deadlock and livelock free protocol for decentralized internet resource coallocation”, IEEE Transactions on Systems, Man, and

Cybernetics, 34(1):123–131, January 2004

[8] Driss Azougagh,Jung-Lok Yu, Jin-Soo Kim, Seung-Ryoul Maeng , “Resource Co-Allocation : A Complementary Technique that Enhances

Performance in Grid Computing Environment”,IEEE, Proceedings of the 2005 11th International Conference on Parallel and Distributed

Systems (ICPADS'05) ,2005.

[9] Qi Chao, Zhang Jing, and Li Jun-Huai, "ACS-based resource assignment and task scheduling in grid," Journal of Southeast University

(English Edition), Vol. 23, No. 3, pp.451-454, Sept. 2007.

[10] Sid Ahmed MAKHLOUF, Belabbas YAGOUBI , “Distributed Resources Co-allocation in Grid Computing” , 978-1-4244-8611-
3/10/$26.00 ©2010 IEEE,p 244-249.

